王 珺 歐 龍
血糖高是糖尿病患者最基本的生化特性,且在糖尿病疾病的發生發展起著重要的作用。它可以增加破骨細胞的活性,骨吸收加速,使得骨代謝失衡,并出現骨質疏松的癥狀[1]。人牙周膜成纖維細胞(hPDLFs)作為牙周組織修復、重建的前體細胞,對于牙周病的病理變化和轉歸意義重大[2-3]。牙周組織的破壞,往往以骨質喪失為最終結果。研究表明,葡萄糖水平與牙周病的發生發展、組織破壞的程度相關。但糖尿病患者葡萄糖水平的變化對牙周膜成纖維細胞凋亡的相關性研究不多且無統一定論。本文通過對糖尿病、牙周膜成纖維細胞凋亡之間的相互關系作一綜述,旨在為臨床治療提供新的理論依據。
糖尿病作為一種代謝性疾病,對于骨代謝和骨改建的影響較為明顯,導致骨喪失。該病是由胰島素的異常分泌而導致的內分泌代謝性疾病,高血糖是其最主要的特征。糖尿病作為我國較為多發的一種病,近年來發病率升高較為明顯,且隨著年齡的增長,病情往往會成加重趨勢[4-5]。文獻報道[6],牙周病、糖尿病存在著一定的共同危險因素。WHO 把牙周病列為糖尿病的第六并發癥,其與糖尿病的關系備受關注。
Seo 等[7]稱,在1 型糖尿病初期,胰島β 細胞死亡的主要表現形式為細胞的凋亡。學者Jang 等[8]指出,2 型糖尿病患者β 細胞功能的降低及胰島素抵抗表現較為明顯,而對于2 型糖尿病β 細胞的數量是否降低及β 細胞是否存在凋亡增加,意見不一。研究顯示,β 細胞的凋亡增加及非β 細胞增生的降低,引發患者胰島抵抗同時釋放可溶性細胞因子,包括氧自由基、NO 等,此類細胞因子可引發β 細胞的功能喪失,嚴重者可導致細胞死亡。細胞凋亡對于糖尿病的發病機制較為重要,且可引發糖尿病的相關并發癥的發生[9]。
牙周致病菌主要為革蘭氏陰性厭氧菌,其胞壁外膜中的脂多糖對牙周組織有較為明顯的毒性,其代謝產物能夠導致白細胞及基質生成細胞的凋亡。據測定,牙周致病菌及其毒性產物會通過凋亡的淋巴細胞,使得宿主免疫細胞的功能受損,進而導致牙周病的發生發展[10]。國外研究報道顯示,細菌脂多糖能夠在腫瘤壞死因子的作用下促進相應基因的表達,Caspase 活性也得到提高,加速了成纖維細胞的凋亡速率,該過程可能的機制為TNFR1 起到了一定的作用,而非TNFR2[11-14]。報道顯示[6],骨代謝性疾病的骨組織病理變化可影響破骨細胞和成骨細胞的數目,且與凋亡所調控的特定細胞的生命周期關系密切。
資料顯示,伴糖尿病的牙周病患者牙周病變較單純牙周病患者更為嚴重,牙槽骨吸收速度快,預后效果明顯差。有學者通過實驗表明,糖尿病患者的血糖成分可促使牙槽骨局部OPG mRNA 的表達能力下降、RANKL mRNA 的表達能力升高,RANKL/ OPG 的比值上調,胰島素在縮小牙槽骨中RANKL/ OPG 比值的同時, 牙周組織炎癥反應的損傷也漸弱,牙槽骨吸收速率有所上升,推測血糖水平的上升課作為糖尿病患者牙槽骨吸收的影響因素[15-20]。
有學者還報道,伴放線桿菌菌體表面蛋白在體外能夠抑制人骨肉瘤MG63 細胞的有絲分裂,誘導其凋亡。伴放線桿菌菌體中的毒素可誘導牙周組織中B 淋巴細胞的凋亡。可見,牙周致病菌及其毒性產物利用淋巴細胞,加速了PDFLs 凋亡,宿主細胞的免疫力相應地降低,加速牙周病的發生及進展[21]。
糖尿病患者機體多種組織的細胞凋亡明顯增加,糖尿病細胞的凋亡增加機制總結為:(1)糖尿病患者高血糖下的AGE 間接可使IL-1、6、TNF等細胞因子增加生成,同時TNF 水平升高能夠增加由caspase-3 途徑導致的細胞凋亡。(2)長期炎癥及高血糖狀態聚集了細胞內的活性氧(ROS),而氧化應激反應可導致多種細胞的凋亡,同時激活線粒體細胞色素C 活性,釋放增加,存進細胞凋亡的發生。
近年來對骨吸收機制的研究發現骨保護素(osteoprote gerin,OPG)是調節破骨細胞分化、成熟和骨吸收功能的重要因子,在生理及病理性骨吸收中意義重大[22-26]。糖尿病患者的牙周組織中OPG成分可調節破骨細胞的分化,打破骨代謝的平衡,骨形成速率小于骨吸收速率,同時破壞了牙周組織局部的牙槽骨[27-33]。通過對伴有不同程度牙周炎的糖尿病患者的血糖進行控制,結果輕度牙周炎的糖尿病患者血糖水平控制結局較為有效[34-35]。另外,伴有輕度牙周炎的糖尿病者機體的糖化血紅蛋白及糖耐量值較重度牙周炎的糖尿病者相比,降低較為明顯,且伴有糖尿病大、小血管病變的發生情況也較為不常見[36-39]。推測,牙周炎疾病的存在及其控制效果與糖尿病患者病程的發生發展關系密切[40]。
目前為止,細胞凋亡的機制是多因素相互作用,促進或抑制細胞凋亡的發生。細胞凋亡調控機制的探討是國內外一個研究熱點,目前很多研究已經表明:除了線粒體,Caspase 家族,Bcl-2 家族等基因和蛋白在細胞凋亡過程中起到重要作用以外,還有許多是人類還沒有認識到的基因和蛋白也起著很重要的作用。通過以上的這些研究,人們清楚地了解到多細胞生物中參與細胞凋亡調節的蛋白質分子發揮功能的方式,使人們能更完整地了解細胞凋亡的機制,并找到有效的手段對細胞凋亡過程進行調控。進而可以幫助人們進一步深入研究細胞凋亡的其他調控機制,并可基于結構開展以特異性蛋白分子為靶標的藥物設計,為臨床上應用及治療糖尿病伴牙周病的方法提供新的思路。
牙周組織工程近年來發展非常迅速。牙周膜干細胞(periodontal ligament stem cell,PDLSC)具有成體干細胞的特征,具有增殖能力、自我更新能力、多向分化潛能。PDLSC 在損傷因子的刺激下定向遷移、增殖和分化來完成牙周組織的修復過程,實現牙周組織的再生。牙周膜細胞(periodontal ligament cells, PDLCs)是牙周組織再生的關鍵,但牙周膜細胞的來源比較困難,使牙周膜細胞移植修復牙周缺損的方法無法廣泛應用。脂肪基質細胞(adipose tissue-derived stem cells,ADSCs)來源于脂肪組織的間充質細胞,具有多向分化的能力并且易于獲得,有望成為牙周缺損修復的種子細胞。骨髓基質細胞(bone mesenchymal stem cells,BMSCs)來源豐富、較好的增殖分化及成骨能力,是骨缺損修復的重要細胞。動物實驗證明,進行自體骨髓干細胞移植6 周后,缺損部位可見成排的新生成骨細胞和成牙骨質細胞位于表面,新生牙槽骨內有較多的毛細血管形成并有許多的骨細胞,有新生牙周膜組織生成,形成了完整的牙周組織結構。牙周組織工程和GTR 的最終目標是獲得牙周軟硬組織的完全再生。
干細胞和微環境共同介導了種子細胞的遷移、定植、分化和增殖過程。選擇合適的種子細胞類型影響著種子細胞本身的生物學活性,而改善宿主微環境則更利于移植干細胞的存活、分化和活性的發揮。糖尿病患者的代謝紊亂、蛋白質缺乏,機體抗體產生減少及白細胞吞噬作用下降,導致感染發生。因此控制血糖、控制感染是糖尿病患者也是牙周手術治療成功的關鍵之一。
綜上所述,糖尿病和牙周膜成纖維細胞之間有一定的關系存在,且相互影響,相互制約,同時糖尿病患者牙周膜成纖維細胞的凋亡更為明顯,炎癥因子是兩種病中的發展及疾病細胞的凋亡進展的關鍵因子。因此不僅對于伴糖尿病的牙周炎患者或伴牙周炎的糖尿病患者,如何有效控制患者機體的炎癥,預防或抑制細胞凋亡,提高糖尿病患者的生活質量,成為治療該疾病的新方向。
[1] Sokos D,Scheres N,Schoenmaker T,et al. A challenge with Porphyromonas gingivalis differentially affects the osteoclastogenesis potential of periodontal ligament fibroblasts from periodontitis patients and non-periodontitis donors[J]. J Clin Periodontol,2014,41(2):95-103
[2] Mizutani N,Kageyama S,Yamada M,et al. The behavior of ligament cells cultured on elastin and collagen scaffolds[J].J Artif Organs,2014,17(1):50-59
[3] Nizam N,Discioglu F,Saygun I,et al. The Effect of α-tocopherol and selenium on human gingival fibroblasts and periodontal ligament fibroblasts in vitro[J]. J Periodontol,2014,85(4):636-644
[4] El-Awady AR,Lapp CA,Gamal AY,et al. Human periodontal ligament fibroblast responses to compression in chronic periodontitis[J]. J Clin Periodontol,2013,40(7):661-671
[5] Cheng L,Lin ZK,Shu R,et al. Analogous effects of recombinant human full-length amelogenin expressed by Pichia pastoris yeast and enamel matrix derivative in vitro[J].Cell Prolif,2012,45(5):456-465
[6] Strydom H,Maltha JC,Kuijpers-Jagtman AM,et al. The oxytalan fibre network in the periodontium and its possible mechanical function[J]. Arch Oral Biol,2012,57(8):1003-1011
[7] Seo T, Cha S, Kim TI, et al. Porphyromonas gingivalis-derived lipopolysaccharide-mediated activation of MAPK signaling regulates inflammatory response and differentiation in human periodontal ligament fibroblasts[J]. J Microbiol,2012,50(2):311-319
[8] Jang YJ,Kim ME,Ko SY. n-Butanol extracts of Panax notoginseng suppress LPS-induced MMP-2 expression in periodontal ligament fibroblasts and inhibit osteoclastogenesis by suppressing MAPK in LPS-activated RAW264.7 cells[J].Arch Oral Biol,2011,56(11):1319-1327
[9] F Lakschevitz,G Aboodi,H Tenenbaum,et al. Diabetes and periodontal diseases: interplay and links[J]. Current diabetes reviews,2011,7(6):433-439
[10] YS Khader,AS Dauod,SS El-Qaderi,et al. Periodontal status of diabetics compared with nondiabetics: a metaanalysis [J]. Journal of diabetes and its complications,2006,20(1):59-68
[11] DC Rodrigues,MJ Taba,AB Novaes,et al. Effect of non-surgical periodontal therapy on glycemic control in patients with type 2 diabetes mellitus[J]. Journal of periodontology,2003,74(9):1361-1367
[12] JE Stewart,KA Wager,AH Friedlander,et al. The effect of periodontal treatment on glycemic control in patients with type 2 diabetes mellitus[J]. Journal of clinical periodontology,2001,28(4):306-310
[13] Seo T,Cha S,Woo KM,et al. Synergic induction of human periodontal ligament fibroblast cell death by nitric oxide and N-methyl-D-aspartic acid receptor antagonist[J]. J Periodontal Implant Sci,2011,41(1):17-22
[14] Choi EJ,Yim JY,Koo KT ,et al. Biological effects of a semiconductor diode laser on human periodontal ligament fibroblasts[J]. J Periodontal Implant Sci,2010,40(3):105-110
[15] Y Nakahara,T Sano,Y Kodama,et al. Glycemic control with insulin prevents progression of dental caries and caries-related periodontitis in diabetic WBN/ KobSlc Rats[J].Toxicologic pathology,2012
[16] Birgit R,James D,Susanne R,et al. Regulatory effects of biome-chanical strain on the insulin-like growth factor system in human periodontal cells[J]. J Biomechanics,2009,42(15): 2584-2589
[17] Correa F,Gonc D,Figueredo C,et al. Effect of periodontal treatment on metabolic control,systemic inflammation and cytokines in patients with type 2 diabetes[J]. J Clin Periodontol,2010,37(1): 53-58
[18] Claudino M,Garlet TP,Cardoso CR,et al. Down-regulation of expression of osteoblast and osteocyte markers in periodontal tissues associated with the spontaneous alveolar bone loss of interleukin-10 knockout mice[J]. Eur J Oral Sci,2010,118(1): 19-28
[19] George J,Headen KV,Ogunleye AO,et al. Lysophosphatidic Acid signals through specific lysophosphatidic Acid receptor subtypes to control key regenerative responses of human gingival and periodontal ligament fibroblasts[J]. J Periodontol,2009,80(8):1338-1347
[20] 李小娜. 茶多酚對脂多糖介導下人牙周膜成纖維細胞ICAM-1、COX-2、MMP-1、MMP-2 和TLR4 表達影響的實驗研究[D].遵義醫學院,2013
[21] 門佳寶,潘雅琪,張克等.茶多酚對內毒素抑制人牙周膜成纖維細胞增殖的影響[J].中國醫藥,2013,8(9):1317-1319
[22] Jang YJ,Kim ME,Ko SY. n-Butanol extracts of Panax notoginseng suppress LPS-induced MMP-2 expression in periodontal ligament fibroblasts and inhibit osteoclastogenesis by suppressing MAPK in LPS-activated RAW264.7 cells[J]. Arch Oral Biol,2011,56(11):1319-1327
[23] Chang YC,Zhao JH. Effects of platelet-rich fibrin on human periodontal ligament fibroblasts and application for periodontal infrabony defects[J]. Aust Dent J,2011,56(4):365-371
[24] Botero JE,Contreras A,Parra B.Profiling of inflammatory cytokines produced by gingival fibroblasts after human cytomegalovirus infection[J]. Oral Microbiol Immunol,2008,23(4):291-298
[25] Ali S,Huber M,Kollewe C,et al. IL-1receptor accessory protein is essential for IL-33-induced activation of tlymphocytes and mast cells[J]. Proc Natl Acad Sci USA,2007,104(47):18660-18665
[26] Koide M,Suda S,Saitoh S,et al. In vivo administration of IL-1 beta accelerates silk ligature-induced alveolar bone resorption in rats[J]. J Oral Pathol Med,1995,24(9):420-434
[27] Lee YM,Fujikado N,Manaka H,et al. IL-1 plays an important role in the bone metabolism under physiological conditions[J]. Int Immunol,2010,22(10):805-816
[28] Goutoudi P,Diza E,Arvanitidou M. Effect of periodontal therapy on crevicular fluid interleukin-6 and interleukin-8 levels in chronic periodontitis[J]. Int J Dent,2012,2012:362905
[29] Yu JH,Lee SP,Kim TI,et al. Identification of N-methyldaspartate receptor subunit in human periodontal ligament fibroblasts:potential role in regulating differentiation[J]. J Periodontol,2009,80(2):338-346
[30] Chae HS,Park HJ,Hwang HR,et al. The effect of antioxidants on the production of pro-inflammatory cytokines and orthodontic tooth movement[J]. Mol Cells,2011,32(2):189-196
[31] Mrozik KM,Gronthos S,Menicanin D,et al. Effect of coating straumann bone ceramic with emdogain on mesenchymal stromal cell hard tissue formation[J]. Clin Oral Investig,2012,16(3):867-878
[32] Park HJ,Baek KH,Lee HL,et al. Hypoxia inducible factor-1α directly induces the expression of receptor activator of nuclear factor-κB ligand in periodontal ligament fibroblasts[J]. Mol Cells,2011,31(6):573-578
[33] El-Awady AR,Messer RL,Gamal AY,et al. Periodontal ligament fibroblasts sustain destructive immune modulators of chronic periodontitis [J]. J Periodontol, 2010, 81 (9):1324-1335
[34] El-Awady AR,Lapp CA,Gamal AY,et al. Human periodontal ligament fibroblast responses to compression in chronic periodontitis[J]. J Clin Periodontol,2013,40(7):661-671
[35] Cheng L,Lin ZK,Shu R,et al. Analogous effects of recombinant human full-length amelogenin expressed by Pichia pastoris yeast and enamel matrix derivative in vitro[J].Cell Prolif,2012,45(5):456-465
[36] Grillo MA,Colombatto S. Advanced glyocation end-products(AGEs):involvement in aging and in neurodegener ative diseases[J]. Amino Acids,2008,35(1):29-36
[37] Seo T, Cha S, Kim TI, et al. Porphyromonas gingivalis-derived lipopolysaccharide-mediated activation of MAPK signaling regulates inflammatory response and differentiation in human periodontal ligament fibroblasts[J]. J Microbiol,2012,50(2):311-319
[38] Kumiko Kaifu1,Hideyasu Kiyomoto1,Hirofumi Hitomi1,et al. Insulin attenuates apoptosis induced by high glucose via the PI3-kinase/ Akt pathway in rat peritoneal mesothelial cells[J]. Nephrol Dial Transplant,2009,24:809-815
[39] Inan? B,El?in AE,El?in YM. In vitro differentiation and attachment of human embryonic stem cells on periodontal tooth root surfaces[J]. Tissue Eng Part A,2009,15(11):3427-3435
[40] Chen FM,Chen R,Wang XJ,et al. In vitro cellular responses to scaffolds containing two microencapulated growth factors[J]. Biomaterials,2009,30(28):5215-5224