謝世清
摘 要:通過分析長壽債券的市場發展以及連續型和觸發型兩類長壽債券的運行機制,采用風險中性定價方法推導出當死亡率服從雙指數跳躍(DEJD)分布時,長壽債券的定價解析式,研究發現,無論從理論還是實踐看,設計并發行觸發型長壽債券是一種應對長壽風險更為明智的選擇。
關鍵詞: 壽險證券化;長壽風險;長壽債券;定價模型
中圖分類號:F832 文獻標識碼: A 文章編號:1003-7217(2014)02-0035-05
一、引言
近年來,隨著我國老齡化問題的加劇,保險公司和社保機構所面臨的長壽風險越來越突出,未來養老年金的支付壓力愈加沉重,長壽養老問題已成為我國一個重大的社會問題。為減緩壓力,延遲退休等政策已經被多次提及,但市場化的解決方案在國內并沒有得到足夠的重視。針對長壽風險,國外著名保險公司已提出了壽險產品的套期保值、再保險以及長壽風險證券化等應對方案。
其中,長壽債券是國際上新興的有效管理長壽風險的金融工具,是指其息票或面值與生存概率相關聯的債券。通過長壽債券,養老基金和保險公司可以將長壽風險轉移給其它金融機構或更為廣泛的投資者,達到分散長壽風險的目的。實際上,由于套期保值面臨壽險產品缺失,而再保險面臨高成本等問題,作為應對長壽風險的創新性解決方案,長壽債券在國際保險市場上受到越來越多的關注。
目前,國外對長壽債券的研究主要集中在兩個方面
圖1 EIB長壽債券的運行機制
五、結 語
由于長壽債券市場的不完全性以及長壽風險的特殊性,長壽債券的定價模型不同于一般傳統的固定收益證券的定價方法。目前運用較為廣泛的是概率分布扭曲定價法和風險中性定價方法,但兩種定價方式都存在一定的局限性。可以預期,長壽債券的合理定價問題仍是今后研究所關注的重點之一。
長壽債券是長壽風險證券化的重要產物,也是應對長壽風險不可或缺的管理工具。但是由于死亡率預測、定價方法、市場參與者等原因,長壽債券并未得到應有的重視與發展。目前國際保險市場上出現過的長壽債券僅為EIB長壽債券和Kortis長壽債券,而前者發行失敗,后者則發行成功。Kortis長壽債券正確的定價固然是其發行成功的重要原因之一,但其設計才是關鍵性的成功因素。
未來長壽債券的發行者不僅要重視對債券的有效定價,同時也應當強調其設計的合理性。就目前情況看來,連續型長壽債券不能將長壽風險在資本市場上有效分散,不利于吸引投資者積極參與。因此,無論從理論還是實踐看,設計并發行觸發型長壽債券是一種未來應對長壽風險的更為明智的選擇。希望本文對長壽債券的探討能夠引起學術界對長壽債券的關注,并嘗試用它來應對我國日益嚴峻的長壽風險。
參考文獻:
[1]Blake, D.and W. Burrows.Survivor bonds: helping to hedge mortality risk[J]. Journal of Risk and Insurance,2001,(68):339-348.
[2]Lin, Y.and S. Cox.Securitization of mortality risks in life annuities[J]. Journal of Risk and Insurance,2005,(72):227-252.
[3]Blake, D.A.J.G.Cairns, K.Dowd,and R. MacMinn.Longevity bonds: financial engineering, valuation and hedging[J]. Journal of Risk and Insurance,2006,(73):647-72.
[4]Denuit, M., P. Devolder, and A.Goderniaux.Securitization of longevity risk: pricing survivor bonds with wang transform in the leecarter framework[J]. Journal of Risk and Insurance,2007,74(1): 87-113.
[5]Cairns, A. J. G., D. Blake, and K. Dowd.A twofactor model for stochastic mortality: theory and calibration[J]. Journal of Risk and Insurance,2006,73(4):687-718.
[6]Bauer, D.and J.Ru.Pricing longevity bonds using implied survival probabilities[A]. 2006 meeting of the American Risk and Insurance Association ARIA,2006.
[7]尚勤,秦學志,周穎穎.死亡強度服從OrnsteinUhlenbeck跳過程的長壽債券定價模型[J].系統管理學報,2008,17(3):298-302.
[8]Chen, H.and J. D.Cummins.Longevity bond premiums: the extreme value approach and risk cubic pricing[J]. Insurance: Mathematics and Economics,2010,46(1): 150-161.
[9]Wang, S.A class of distortion operations for pricing financial and insurance risks[J]. Journal of Risk and Insurance, 2000,67(1): 15-36.
[10]Milevsky, M.A.and S.D.Promislow.Mortality derivatives and the option to annuitize[J]. Insurance: Mathematics and Economics,2001,(29):299.318.
[11]Cairns, A.J.G., D.Blake, P. Dawson, and K.Dowd.Pricing the risk on longevity bonds[J]. Life and Pensions, October,2005,(10):41-44.
[12]Deng, Y., P. L Brockett, and R. D. MacMinn.Longevity/mortality risk modeling and securities pricing[J]. Journal of Risk and Insurance,2012,79(3):697-721.
(責任編輯:寧曉青)
The Operational Mechanisms and Pricing Models of Longevity Bonds
XIE Shiqing
. (School of Economics Peking University, Beijing 100871, China).
Abstract:By analyzing the market development of longevity bonds and two different operational mechanisms of continuous and triggered longevity bonds, and deducing a pricing formula of longevity bonds with DEJD mortality model using riskneutral pricing method, this paper finds that the triggered longevity bonds seem to be a more reasonable option than continuous longevity bonds to deal with longevity risk both from the theoretical and practical perspectives.
Key words:Life Insurance Securitization; Longevity Risk; Longevity Bonds; Pricing Model
[10]Milevsky, M.A.and S.D.Promislow.Mortality derivatives and the option to annuitize[J]. Insurance: Mathematics and Economics,2001,(29):299.318.
[11]Cairns, A.J.G., D.Blake, P. Dawson, and K.Dowd.Pricing the risk on longevity bonds[J]. Life and Pensions, October,2005,(10):41-44.
[12]Deng, Y., P. L Brockett, and R. D. MacMinn.Longevity/mortality risk modeling and securities pricing[J]. Journal of Risk and Insurance,2012,79(3):697-721.
(責任編輯:寧曉青)
The Operational Mechanisms and Pricing Models of Longevity Bonds
XIE Shiqing
. (School of Economics Peking University, Beijing 100871, China).
Abstract:By analyzing the market development of longevity bonds and two different operational mechanisms of continuous and triggered longevity bonds, and deducing a pricing formula of longevity bonds with DEJD mortality model using riskneutral pricing method, this paper finds that the triggered longevity bonds seem to be a more reasonable option than continuous longevity bonds to deal with longevity risk both from the theoretical and practical perspectives.
Key words:Life Insurance Securitization; Longevity Risk; Longevity Bonds; Pricing Model
[10]Milevsky, M.A.and S.D.Promislow.Mortality derivatives and the option to annuitize[J]. Insurance: Mathematics and Economics,2001,(29):299.318.
[11]Cairns, A.J.G., D.Blake, P. Dawson, and K.Dowd.Pricing the risk on longevity bonds[J]. Life and Pensions, October,2005,(10):41-44.
[12]Deng, Y., P. L Brockett, and R. D. MacMinn.Longevity/mortality risk modeling and securities pricing[J]. Journal of Risk and Insurance,2012,79(3):697-721.
(責任編輯:寧曉青)
The Operational Mechanisms and Pricing Models of Longevity Bonds
XIE Shiqing
. (School of Economics Peking University, Beijing 100871, China).
Abstract:By analyzing the market development of longevity bonds and two different operational mechanisms of continuous and triggered longevity bonds, and deducing a pricing formula of longevity bonds with DEJD mortality model using riskneutral pricing method, this paper finds that the triggered longevity bonds seem to be a more reasonable option than continuous longevity bonds to deal with longevity risk both from the theoretical and practical perspectives.
Key words:Life Insurance Securitization; Longevity Risk; Longevity Bonds; Pricing Model