劉曉佳等
摘要:糖尿病視網膜病變(DR)是糖尿病微血管病變常見的并發癥,具有高發病率和高致盲率,特別是增生性糖尿病視網膜病變(PDR)可引起患者嚴重的視力喪失。DR發病機制非常復雜,病理過程包括周細胞喪失、內皮細胞增生、基底膜增厚、管腔狹窄閉塞、視網膜缺血缺氧、血管新生及牽拉性視網膜脫離等,各進程涉及多種細胞因子。本文就血管內皮細胞生長因子VEGF、Ang-Tie系統和胰島素樣生長因子IGF系統進行討論,該類分子機制主要參與了糖尿病引起的視網膜缺血性血管病變。
關鍵詞:糖尿病視網膜病變;細胞因子;視網膜缺血
中圖分類號:R5872文獻標志碼:A文章編號:1007-2349(2014)10-0078-05
【Abstract】Diabetic retinopathy(DR)is a common complication of diabetic microvascular disease,with high morbidity and high rate of blindness and particularly proliferative diabetic retinopathy(PDR)can cause severe vision loss for patients. DR pathogenesis is very complex with pathological processes including pericytes loss,endothelial cell proliferation,basement membrane thickening,stenosis occlusion,retinal ischemia and hypoxia traction retinal detachment as well as various processes and a variety of cytokines. Vascular endothelial growth factor VEGF and Ang-Tie system and insulin growth factor IGF system are discussed in the paper. The molecular mechanism is mainly involved in the retinal ischemic vascular lesions caused by diabetes
【Key words】diabetic retinopathy,cytokines,retinal ischemia
糖尿病是一種長期以高血糖為主要特征的代謝綜合征,是由于胰島素缺乏和(或)胰島素牛物作用障礙導致的糖代謝紊亂,同時伴有脂肪、蛋白質、水、電解質等代謝障礙,并可并發眼、腎、神經、心血管等多臟器慢性損害[1]。其中,糖尿病視網膜病變(DR)是糖尿病微血管病變常見的并發癥。高血糖是糖尿病并發癥發生和發展的重要因素,然而糖尿病最終是如何引起的DR的發病機制非常復雜。長時間的高血糖癥會導致氧化酶損傷、微血栓形成、細胞因子活化等。DR發病的病理過程包括周細胞喪失、內皮細胞增生、基底膜增厚、管腔狹窄閉塞、視網膜缺血缺氧、血管新生及牽拉性視網膜脫離等,各進程涉及血管內皮細胞生長因子VEGF、Ang-Tie和胰島素樣生長因子IGF多種細胞因子[2]?,F將其綜述如下。
1血管內皮細胞生長因子(VEGF)
VEGF是血管生成的關鍵調節因子,并涉及糖尿病視網膜血管病變的致病機制[3]。VEGF家族包括7個分泌型糖蛋白VEGF-A、-B、-C、-D、-E、-F,以及胎盤生長因子。VEGF-A(就是通常所說的VEGF)是一種高度特異性的內皮細胞促有絲分裂原,是最重要的血管形成調節因子。由于外顯子選擇性剪切方式的差異性產生不同長度的血管原亞型,根據氨基酸鏈的長度被定為VEGF121,VEGF145,VEGF165,VEGF183,VEGF189和VEGF206。其中VEGF165被認為是與缺血性視網膜病變關系最密切的亞型[4]。差異性剪切同樣能夠產生抗血管原的VEGF亞型,其氨基酸編號后用'b'標識(VEGF121b,VEGF165b 和VEGF189b)[5]。血管內皮生長因子可能由人視網膜中多種細胞合成,如內皮細胞,周細胞,神經細胞和視網膜色素上皮細胞[6]。VEGF家族成員至少有五個跨膜的絡氨酸蛋白激酶受體VEGFR-1(Flt-1)、VEGFR-2(KDR)、VEGFR-3(Flt4)、神經氈蛋白1(NRP-1)和神經氈蛋白2(NRP-2),VEGF能與VEGFR-1和-2以及NP-1和-2結合,VEGFR活化的主要原因是VEGF糖蛋白促血管生成活動所發出的信號[7]。VEGFR-2的主要作用是介導VEGF血管內皮細胞增生,增加血管通透性和趨化內皮細胞等功能。VEGFR-2為VEGF的主要功能受體。采用免疫組化研究18例無糖尿病史捐贈者的眼睛和27例有糖尿病史的以及四只眼內注射PBS或VEGF-A的猴子,結果顯示無糖尿病史者和注射PBS猴子的視網膜內VEGFR-1、-2、-3在非血管區表達,只有VEGFR-1在視網膜微血管組成型表達,在患有糖尿病史者微血管內VEGFR-2、-3表達上調,且主要在滲漏的微血管內,注射VEGF-A的猴子視網膜微血管內VEGFR-1、-2、-3均有表達,這表明微血管內VEGFs發出信號活化VEGFR-2、-3發生在糖尿病發病之后[8]。獼猴脈絡膜-視網膜內皮細胞(RF/6A)能持續性表達VEGFR-2和NRP-1,且在低氧情況下該表達增加[9]。
HIF是最重要的VEGF表達轉錄調節因子,微陣列基因表達數據分析顯示人血管內皮細胞中所有的基因超過2%被HIF-1調控[10]。缺氧誘導因子(HIF)是一個轉錄因子,當細胞處于低氧條件時其能與一分子的缺氧反應原件(HRE)在VEGF基因啟動子中結合。HIF異二聚體含有分別對氧敏感和不敏感的HIF-α及HIF-β亞基。不同的HIF-a亞基產生不同的HIFs,不過至今大多數的研究主要集中在HIF-1。缺氧使二聚的HIF-α和HIF-β亞基產生活性HIF[11]。從動物試驗中能清楚的看到HIF-1對于缺血性視網膜病變的重要性,一項氧誘導小鼠視網膜病變(OIR)的試驗中,小鼠從高氧恢復到正常氧環境期間,用免疫印跡法測定HIF-1α和HIF-2α,并用免疫組化法檢測它們在細胞分布的情況,結果顯示HIF-1α和HIF-2α蛋白水平顯著升高,HIF-1α主要分布于視網膜內層神經元細胞而HIF-2α僅存在于Müller神經膠質和星形膠質細胞,當視網膜內皮細胞處于低氧狀態HIF-α表達增高時緊接著會有VEGF和紅細胞生成素(EPO)的表達增高[12]??焖偌訌娨葝u素治療是糖尿病視網膜病變的獨立危險因素,快速加強胰島素治療的糖尿病大鼠視網膜VEGF水平顯著提高,視網膜細胞核提取物HIF-1α含量也增高,且HIF-1α與VEGF啟動子中的缺氧反應原件的相關結合性增加,強化胰島素治療后的血視網膜屏障損害顯著提高。對氧誘導視網膜病變小鼠的視網膜內雙重注射HIF-1α抑制劑(YC-1),YC-1呈現多效性,總的視網膜病變率下降,血管閉塞受到抑制,CD31和血管性血友因子(vWF)表達增加HIF-1α蛋白的表達顯著受到抑制,且VEGF、紅細胞生成素、內皮素-1等表達下調,YC-1能抑制病理性的視網膜血管新生[13]。endprint
轉錄增強因子-1(TEF-1)是一種細胞特異性轉錄激活因子,能調控心臟和骨骼肌細胞的多種基因表達。最初關于該轉錄因子與VEGF相互作用的描述是在牛主動脈內皮細胞中,研究發現TEF-1家族成員之一RTEF-1在缺氧的內皮細胞中表達上調,過度表達的RTEF-1能增加VEGF啟動子的活性以及VEGF的表達,致使內皮細胞增殖擴散并促進血管的形成[14]。在常氧和缺氧條件下培養人視網膜內皮細胞,用RT-PCR檢測RTEF-1轉錄,結果顯示內皮細胞存在RTEF-1轉錄產物且在高氧和低氧情況下產生可變剪接產物,可變剪接變異體能夠增強VEGF5 附近啟動子區域的表達[15]。RTEF-1可增強VEGF的表達,但其一個新的亞型TEAD4216能抑制VEGF啟動子的活性且不受環境中氧含量的影響[16]。
2Angiopoietin-Tie系統
促血管生成素(angiopoietin,Ang)和其特異性的受體Tie對于維持正常視網膜脈管系統的發育以及維持其成熟性至關重要。另一方面,該系統的微小變化可能導致視網膜血管病變,其作用方式較為復雜,部分取決于環境因素。Ang-1能激活內皮細胞受體蛋白激酶-Tie2。Ang-1主要來源于視網膜周細胞[17]。Tie2同樣由周細胞產生,并與Ang-1一起影響血管的改變,并且該過程受Ang-Tie系統的調控[18,19]。雖然Ang-2也能和Tie2結合,但是親和力和效價低,可能充當了Tie2的興奮劑和拮抗劑的作用[20]。然而Watanabe 等研究發現,Ang-2與人視網膜缺血性血管病變有關,臨床數據結果顯示出:30例有活性增生糖尿病視網膜病變患者的玻璃體內Ang-2水平相較于11例非增生性糖尿病患者以及18例沒有糖尿病的人顯著提高[21]。
此外,很多研究者利用體內及體外模型研究闡明了Ang-Tie系統在缺血性視網膜血管病變中的作用。通過對氧誘導小鼠視網膜病變模型的研究發現,當視網膜新生血管化活躍的時候,其峰值水平達P17,視網膜內Ang-2表達增加,而此時Ang-1表達無變化[22]。將成年大鼠短暫性的置于無氧條件下同樣可以檢測到Ang-2蛋白表達上調[23]。有兩篇文獻[24]均報道了在鏈脲佐菌素誘導的糖尿病大鼠視網膜中,Ang-2信號和蛋白的表達均上調,而Ang-1的水平是不受影響的;相反,在非糖尿病大鼠模型中Ang-2表達無變化。盡管兩個課題組研究的動力學有所不同,但實驗結果均表明了Ang-Tie系統在缺血性視網膜血管病變中起到的調節作用,并且其中的變化與Ang-2有關。
進一步的研究發現,對氧誘導視網膜病變小鼠注射Tie2受體拮抗劑后,視網膜內新生的毛細血管的形成顯著降低[22]。而在同樣的動物模型中,經組織病理學檢測雜合子和純合子后,發現Ang-2基因的缺失很少甚至不會導致視網膜血管新生[25]。相反,Ang-2的大量表達會導致視網膜血管新生量減少[26]。進一步的研究發現,Ang-2是否具有使血管新生和血管退化的作用取決于視網膜是否缺血有關[27]。通過檢測伊文氏藍標記的白蛋白溢出物發現,在成熟的鏈脲霉素注射的大鼠體玻璃體內注射Ang-1 后,視網膜血管通透性減弱,然而向玻璃體腔內注射Ang-2可增強視網膜血管通透性,可見Ang-2與視網膜血管通透性方面有著重要的影響[24]。隨后,Rangasamy等的研究也同樣發現在糖尿病視網膜病變過程中,Ang-2在增加血管的通透性方面可能發揮重要作用[24]。
另外,研究視網膜內皮細胞為涉及Ang-Tie系統在視網膜缺血性血管病變中提供了別有新意的新視角。在視網膜缺血性血管病變中,Ang的表達以及效應會受到VEGF的影響。在牛視網膜內皮細胞中,VEGF會選擇性上調Ang-2的表達。牛視網膜內皮細胞用Ang1或Ang2處理,MMP-9水平提高,MMP-9可通過釋放VEGF以參與血管生成[28]。用Ang-2和VEGF對豬視網膜血管內皮細胞進行處理后,用anti-ZO-1抗體對Ang-2和VEGF進行可視化評估,研究發現Ang-2和VEGF之間產生的相互作用會進一步促進血管通透性增強[29]。
3胰島素樣生長因子IGF-1系統
自從胰島素樣生長因子(IGF)-1在30年前被首次測序獲得,一個包括配體受體和結合蛋白復雜的IGF系統才被人們所認識[30]。關于視網膜缺血性血管病變,對于IGF系統而言,該領域的大多數工作主要集中在IGF-1(胰島素樣生長因子-1)。IGF-1最初研究發現是在肝臟合成,后來又報道證明在眼中和眼外也可合成。IGF-1可能通過自分泌,旁分泌和內分泌路徑實現效應??扇苄缘腎GF-1與細胞表面受體IGF-1R親和力最高,IGF-1的生物活性主要通過與受體IGF-1R結合來體現,構成自分泌或旁分泌來發揮作用。嚙齒動物眼檢查表明IGF-1可能由視網膜內皮細胞產生,包括光感受器和神經元集群以及神經膠質細胞和視網膜血管內皮細胞[23,31]。很明顯IGF-1在視網膜內皮細胞生存中扮演了很重要的角色,轉錄組學分析證實在人視網膜內皮細胞中IGF-1R的表達較高。在高濃度的葡萄糖及血清饑餓條件下可導致人視網膜內皮細胞凋亡,但這種影響在細胞與IGF-1一起培養時可以部分消除[32]。各類動物實驗和人體均可觀察到IGF-1促進視網膜內皮細胞增殖擴散的能力[33~34]。視網膜內皮細胞可能部分響應IGF-1。增值性人視網膜內皮細胞和血管內皮細胞對比,兩者增長均與VEGF劑量正相關,而只有視網膜內皮細胞生長只與IGF-1相關[33]。后來在Smith和Hellstrom合作的試驗中[35],涉及IGF-1基因缺失的小鼠和臨床觀察早產嬰兒得到了一項重要的早產兒視網膜病假設;早產后的嬰兒缺乏充足的IGF-1,視網膜血管發育首先停止,導致缺氧和VEGF增加嚴重,當IGF-1水平恢復則視網膜血管發育就恢復。
增殖性視網膜病變是導致糖尿病患者失明的主要原因。Danis等[36]認為,并不是整個視網膜病變過程均有IGF-1增高,只有增生性病變時,循環中IGF-1才增高。糖尿病患者玻璃體內IGF-l與lGFBP-3濃度與二者的血清濃度呈正相關,與糖尿病視網膜病變血管通透性增強以及血-視網膜屏障功能減弱有關,從而促進玻璃體內新生血管形成。IGF-l在新生血管形成過程中,不僅能促進毛細血管內皮細胞的增殖與分化,還能促進凝血酶原激活物和氧自由基的釋放,激活纖溶酶原,降解視網膜微血管的基底膜,使血管內皮細胞易于移動,導致新生血管形成出現增殖性視網膜病變[37~38]。endprint
然而,IGF-1的生物活性通常是受胰島素受體和胰島素樣生長因子結合蛋白的影響(IGFBPS),其可能會隔絕IGF-1或使其受體附近的生長因子富集。至今有六個高親和性的IGBPs被報道[39]。幾個小組研究關于IGF-1和糖尿病視網膜病變患者眼中獲得的相關蛋白的表達。研究結果過表明,IGF-1水平改變和IGF-1受體表達增加有利于視網膜缺血性血管病變生長因子的表達[40]。Ulbig 等[41]的研究結果顯示,從5個玻璃體切除手術的增生型糖尿病視網膜病變患者中摘除視網膜前纖維血管膜有很強結合放射性的IGF-1,且該實驗認為其可被額外的非放射性IGF-1抑制,結果表明視網膜新生血管組織有IGF-1受體的表達。此外,從三例無增生糖尿病視網膜病變史的死者眼中分離出視網膜內皮細胞,通過膠體金定量免疫組化學檢測,結果顯示相較于3例無糖尿病史的捐贈者其IGF-1水平明顯降低。這與IGF-1R、IGFBP(1、2、3、5)表達增加、IGFBP4表達降低相關[42]。
4展望
DR 的發病是一個很復雜的病理過程,它是多因素、多階段作用的結果。它與VEGF因子、Ang-Tie系統和胰島素樣生長因子系統有關。糖尿病視網膜病變至今已取得了較大的成績,但是由于其發病機制錯綜復雜,各種因素協同作用相互影響,共同參與其發生發展,目前對于糖尿病糖尿病視網膜病變的影響已經有很多研究報道,本文對其的分子機制進行了深入的探討。這些分子機制在防治糖尿病視網膜病變,以及其它糖尿病并發癥,以至于治療糖尿病都奠定了很好的基礎。因此,根據DR發病機制研究的新進展,在DR的防治中,應高度重視該類分子機制在參與糖尿病所引起的視網膜缺血性血管病變,并做好血糖控制和改善微循環。
參考文獻:
[1]付文亮,付秀美,和亞強,馬洪偉,陳志宏:生長激素/胰島素樣生長因子-1 軸與糖尿病研究進展[J].中國老年學雜志 2010,30(19):2869-2872
[2]張小玲,邱曙東,陳艷炯,孫文濤:糖尿病性視網膜病變發病機制研究進展[J].國際眼科雜志 2005,5(6):1239-1242
[3]Gong C-Y,Yu Z-Y,Lu B,Yang L,Sheng Y-C,Fan Y-M,Ji L-L,Wang Z-T:Ethanol extract of Dendrobium chrysotoxum Lindl ameliorates diabetic retinopathy and its mechanism[J].Vascular Pharmacology 2014
[4]Ishida S,Usui T,Yamashiro K,Kaji Y,Amano S,Ogura Y,Hida T,Oguchi Y,Ambati J,Miller JW:VEGF164-mediated inflammation is required for pathological,but not physiological,ischemia-induced retinal neovascularization[J].The Journal of experimental medicine 2003,198(3):483-489
[5]Qiu Y,Hoareau-Aveilla C,Oltean S,Harper SJ,Bates DO:The anti-angiogenic isoforms of VEGF in health and disease[J].Biochemical Society Transactions 2009,37(Pt 6):1207
[6]Vidro EK,Gee S,Unda R,Ma J-x,Tsin A:Glucose and TGFβ2 Modulate the Viability of Cultured Human Retinal Pericytes and Their VEGF Release[J].Current eye research 2008,33(11-12):984-993
[7]Otrock ZK,Makarem JA,Shamseddine AI:Vascular endothelial growth factor family of ligands and receptors:review[J].Blood Cells,Molecules,and Diseases 2007,38(3):258-268
[8]Witmer AN,Blaauwgeers HG,Weich HA,Alitalo K,Vrensen GF,Schlingemann RO:Altered expression patterns of VEGF receptors in human diabetic retina and in experimental VEGF-induced retinopathy in monkey[J].Investigative ophthalmology & visual science 2002,43(3):849-857
[9]Ottino P,Finley J,Rojo E,Ottlecz A,Lambrou GN,Bazan H,Bazan NG:Hypoxia activates matrix metalloproteinase expression and the VEGF system in monkey choroid-retinal endothelial cells:involvement of cytosolic phospholipase A2 activity[J].Mol Vis 2004,10(43):341-350endprint
[10]Manalo DJ,Rowan A,Lavoie T,Natarajan L,Kelly BD,Shui QY,Garcia JG,Semenza GL:Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1[J].Blood 2005,105(2):659-669
[11]Ivan M,Kondo K,Yang H,Kim W,Valiando J,Ohh M,Salic A,Asara JM,Lane WS,Kaelin Jr WG:HIFα targeted for VHL-mediated destruction by proline hydroxylation:implications for O2 sensing[J].Science 2001,292(5516):464-468
[12]Mowat FM,Luhmann UF,Smith AJ,Lange C,Duran Y,Harten S,Shukla D,Maxwell PH,Ali RR,Bainbridge JW:HIF-1alpha and HIF-2alpha are differentially activated in distinct cell populations in retinal ischaemia[J].PLoS One 2010,5(6):e11103
[13]DeNiro M,Al-Halafi A,Al-Mohanna FH,AlSmadi O,Al-Mohanna FA:Pleiotropic effects of YC-1 selectively inhibit pathological retinal neovascularization and promote physiological revascularization in a mouse model of oxygen-induced retinopathy[J].Molecular pharmacology 2010,77(3):348-367
[14]Shie J-L,Wu G,Wu J,Liu F-F,Laham RJ,Oettgen P,Li J:RTEF-1,a novel transcriptional stimulator of vascular endothelial growth factor in hypoxic endothelial cells[J].Journal of Biological Chemistry 2004,279(24):25010-25016
[15]Appukuttan B,McFarland TJ,Davies MH,Atchaneeyasakul L-o,Zhang Y,Babra B,Pan Y,Rosenbaum JT,Acott T,Powers MR:Identification of novel alternatively spliced isoforms of RTEF-1 within human ocular vascular endothelial cells and murine retina[J].Investigative ophthalmology & visual science 2007,48(8):3775-3782
[16]Appukuttan B,McFarland TJ,Stempel A,Kassem JB,Hartzell M,Zhang Y,Bond D,West K,Wilson R,Stout A:The Related Transcriptional Enhancer Factor-1 Isoform,TEAD4216,Can Repress Vascular Endothelial Growth Factor Expression in Mammalian Cells[J].PloS one 2012,7(6):e31260
[17]Wakui S,Yokoo K,Muto T,Suzuki Y,Takahashi H,Furusato M,Hano H,Endou H,Kanai Y:Localization of Ang-1,-2,Tie-2,and VEGF expression at endothelial-pericyte interdigitation in rat angiogenesis[J].Laboratory investigation 2006,86(11):1172-1184
[18]Pfister F,Feng Y,vom Hagen F,Hoffmann S,Molema G,Hillebrands J-L,Shani M,Deutsch U,Hammes H-P:Pericyte Migration A Novel Mechanism of Pericyte Loss in Experimental Diabetic Retinopathy[J].Diabetes 2008,57(9):2495-2502
[19]Cai J,Ruan Q,Chen ZJ,Han S:Connection of pericyte-angiopoietin-Tie-2 system in diabetic retinopathy:friend or foe[J].Future medicinal chemistry 2012,4(17):2163-2176
[20]Yuan HT,Khankin EV,Karumanchi SA,Parikh SM:Angiopoietin 2 is a partial agonist/antagonist of Tie2 signaling in the endothelium[J].Molecular and cellular biology 2009,29(8):2011-2022endprint
[21]Watanabe D,Suzuma K,Matsui S,Kurimoto M,Kiryu J,Kita M,Suzuma I,Ohashi H,Ojima T,Murakami T:Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy[J].New England Journal of Medicine 2005,353(8):782-792
[22]Das A,McGuire PG:Retinal and choroidal angiogenesis:pathophysiology and strategies for inhibition[J].Progress in retinal and eye research 2003,22(6):721-748
[23]Sivakumar V,Zhang Y,Ling E,Foulds W,Kaur C:Insulin‐like growth factors,angiopoietin‐2,and pigment epithelium–derived growth factor in the hypoxic retina[J].Journal of neuroscience research 2008,86(3):702-711
[24]Rangasamy S,Srinivasan R,Maestas J,McGuire PG,Das A:A potential role for angiopoietin 2 in the regulation of the blood–retinal barrier in diabetic retinopathy[J].Investigative ophthalmology & visual science 2011,52(6):3784-3791
[25]Feng Y,Wang Y,Pfister F,Hillebrands J-L,Deutsch U,Hammes H-P:Decreased hypoxia-induced neovascularization in angiopoietin-2 heterozygous knockout mouse through reduced MMP activity[J].Cellular Physiology and Biochemistry 2009,23(4-6):277-284
[26]Oshima Y,Deering T,Oshima S,Nambu H,Reddy PS,Kaleko M,Connelly S,Hackett SF,Campochiaro PA:Angiopoietin‐2 enhances retinal vessel sensitivity to vascular endothelial growth factor[J].Journal of cellular physiology 2004,199(3):412-417
[27]Hammes H-P,Feng Y,Pfister F,Brownlee M:Diabetic retinopathy:targeting vasoregression[J].Diabetes 2011,60(1):9-16
[28]Oh H,Takagi H,Suzuma K,Otani A,Matsumura M,Honda Y:Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells[J].Journal of Biological Chemistry 1999,274(22):15732-15739
[29]Peters S,Cree IA,Alexander R,Turowski P,Ockrim Z,Patel J,Boyd SR,Joussen AM,Ziemssen F,Hykin PG:Angiopoietin modulation of vascular endothelial growth factor:Effects on retinal endothelial cell permeability[J].Cytokine 2007,40(2):144-150
[30]Martin JL,Baxter RC:Signalling pathways of insulin-like growth factors(IGFs)and IGF binding protein-3[J].Growth Factors 2011,29(6):235-244
[31]Lofqvist C,Willett KL,Aspegren O,Smith AC,Aderman CM,Connor KM,Chen J,Hellstrom A,Smith LE:Quantification and localization of the IGF/insulin system expression in retinal blood vessels and neurons during oxygen-induced retinopathy in mice[J].Investigative ophthalmology & visual science 2009,50(4):1831-1837
[32]Wilson SH,Davis MI,Caballero S,Grant MB:Modulation of retinal endothelial cell behaviour by insulin-like growth factor 1 and somatostatin analogues:Implications for diabetic retinopathy[J].Growth Hormone & IGF Research 2001,11:S53-S59endprint
[33]Browning AC,Halligan EP,Stewart EA,Swan DC,Dove R,Samaranayake GJ,Amoaku WM:Comparative gene expression profiling of human umbilical vein endothelial cells and ocular vascular endothelial cells[J].British Journal of Ophthalmology 2012,96(1):128-132
[34]Devi TS,Singh LP,Hosoya K-I,Terasaki T:GSK-3β/CREB axis mediates IGF-1-induced ECM/adhesion molecule expression,cell cycle progression and monolayer permeability in retinal capillary endothelial cells:Implications for diabetic retinopathy[J].Biochimica et Biophysica Acta(BBA)-Molecular Basis of Disease 2011,1812(9):1080-1088
[35]Hellstrom A,Perruzzi C,Ju M,Engstr?m E,H?rd A-L,Liu J-L,Albertsson-Wikland K,Carlsson B,Niklasson A,Sj?dell L:Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells:direct correlation with clinical retinopathy of prematurity[J].Proceedings of the National Academy of Sciences 2001,98(10):5804-5808
[36]Danis RP,Ciulla TA,Criswell M,Pratt L:Anti-angiogenic therapy of proliferative diabetic retinopathy[J].Expert opinion on pharmacotherapy 2001,2(3):395-407
[37]Wilkinson-Berka JL,Wraight C,Werther G:The role of growth hormone,insulin-like growth factor and somatostatin in diabetic retinopathy[J].Current medicinal chemistry 2006,13(27):3307-3317
[38]Kaya A,Kar T,Aksoy Y,zalper V,Ba bu B:Insulin analogues may accelerate progression of diabetic retinopathy after impairment of inner blood-retinal barrier[J].Medical hypotheses 2013,81(6):1012-1014
[39]Kielczewski JL,Hu P,Shaw LC,Li Calzi S,Mames RN,Gardiner TA,McFarland E,Chan-Ling T,Grant MB:Novel protective properties of IGFBP-3 result in enhanced pericyte ensheathment,reduced microglial activation,increased microglial apoptosis,and neuronal protection after ischemic retinal injury[J].The American journal of pathology 2011,178(4):1517-1528
[40]Burgos R,Mateo C,Canton A,Hernández C,Mesa J,Simó R:Vitreous levels of IGF-I,IGF binding protein 1,and IGF binding protein 3 in proliferative diabetic retinopathy:a case-control study[J].Diabetes Care 2000,23(1):80-83
[41]Ulbig M,Wolfensberger T,Hiscott P,Ationu A,Carter N,Gregor Z:Insulin-like growth factor I(IGF-I)receptor/binding protein in human diabetic epiretinal membranes[J].German journal of ophthalmology 1995,4(5):264-268
[42]Spoerri P,Ellis E,Tarnuzzer R,Grant M:Insulin-like growth factor:receptor and binding proteins in human retinal endothelial cell cultures of diabetic and non-diabetic origin[J].Growth Hormone & IGF Research 1998,8(2):125-132
(收稿日期:2014-06-30)endprint