曾敏翔,陳 翔,謝虞清,管 劍,甄杰明,朱先軍,楊上峰
(中國科學技術大學材料科學與工程系 中國科學院能量轉換材料重點實驗室合肥微尺度物質科學國家實驗室,安徽 合肥,230026)
乙醇胺修飾的石墨烯量子點的合成及生物成像應用
曾敏翔,陳翔,謝虞清,管劍,甄杰明,朱先軍,楊上峰
(中國科學技術大學材料科學與工程系 中國科學院能量轉換材料重點實驗室合肥微尺度物質科學國家實驗室,安徽 合肥,230026)
摘要:作為新一代基于碳材料的量子點,乙醇胺(Ethanolamine,ETAM)修飾的石墨烯量子點(ETAM-GQDs)成功地通過一步水熱法被合成出來,并通過實驗顯示出在生物成像應用中的潛力。以檸檬酸作為碳源、甘氨酸作為橋聯劑,通過乙醇胺/去離子水共溶劑水熱法,成功地實現了在石墨烯量子點表面修飾乙醇胺得到ETAM-GQDs。通過原子力顯微鏡(AFM)、光電子能譜(XPS)、拉曼光譜等對ETAM-GQDs進行表征,在測得ETAM-GQDs的穩態熒光光譜后,通過使用硫酸奎寧作為參比,在365 nm紫外光激發下測得的ETAM-GQDs的量子產率為38.2%。除此之外,活體細胞HL7702和ETAM-GQDs共培養后,通過熒光成像實驗證實了ETAM-GQDs可以作為有效的生物成像劑。
關鍵詞:石墨烯;量子點;光致發光;生物成像
1前言
具有光致發光特性的碳材料量子點,由于其低成本、低毒性、良好的化學惰性和生物相容性,近年來吸引了越來越多的研究興趣[1-10]。作為傳統半導體量子點的替代材料,基于碳材料的量子點具有廣闊的應用,其中包括生物成像和生物標記[4-12]、熒光墨水[13]、光催化[14-15]、光致發光二極管以及太陽能電池等應用[16-18]。從形貌和尺寸來看,基于碳材料量子點可分為兩大類:碳量子點和石墨烯量子點。碳量子點(CDs)通常被定義為尺寸小于10 nm的類球形碳顆粒[3-9,19];而石墨烯量子點(GQDs)則具有單層或多層石墨烯片狀結構,并且其平面直徑往往小于100 nm[3-9,20-21]。由于顯著的量子限域效應和邊界效應,石墨烯量子點具有許多有趣的特性并且近年來受到了越來越多的研究[3-9,20-47]。到目前為止,合成石墨烯量子點的方法包括水熱/溶劑熱切割法[22]、電化學氧化法[12,23]、等離子氧處理法[25]、化學全合成[26]、酸解法和氧化分解法等[3-9,24,27]。為了改善石墨烯量子點的表面化學特性[26-30,46],化學前驅體常常被用來表面修飾和引入其他元素的摻雜。2011年李等[29]報道了石墨烯量子點與低聚端基胺聚乙二醇反應得到藍色熒光的修飾石墨烯量子點,其尺寸為5~19 nm,量子產率為7.4%。同年,Muellen等[31]利用多環芳烴作為前驅體(Hexa-Peri-Hexabenzocoronene,HBC)合成了多色碟狀石墨烯量子點。盡管這些方法都能得到修飾石墨烯量子點,但是由于這些分步合成修飾法多使用昂貴的化學前驅體和復雜的操作流程,因而難以直接應用到工業生產[2-9,21,29-30]。因此,一種能夠快速合成高量子產率的修飾石墨烯量子點有待研究發展。
本文報道以檸檬酸作為碳源、甘氨酸作為橋聯劑、通過乙醇胺/去離子水共溶劑水熱法,一步合成乙醇胺修飾的石墨烯量子點(ETAM-GQDs)。
2實驗
2.1材料
檸檬酸(C6H8O7·H2O,99.5%),甘氨酸(99.5%),2-氨基乙醇(乙醇胺,ETAM,99.0%),所有化學品使用前未經進一步純化。
2.2石墨烯量子點合成
ETAM-GQDs是將混合碳源(檸檬酸和甘氨酸)和表面鈍化劑(乙醇胺)作為前驅體,一步水熱處理而合成的。在一個典型的合成過程中,將1.0 g(4.8毫摩爾)檸檬酸一水合物和0.3 g(4.0毫摩爾)甘氨酸溶解在5 ml 2-氨基乙醇(ETAM)和水的混合溶劑(4∶1,體積比)并超聲30 min。然后將得到的濃混合液在特氟隆高壓釜中進行水熱加熱200 ℃、5 h。得到的深綠色粗產物用甲醇/丙酮作為洗脫劑,利用柱色譜純化得到了乙醇胺修飾石墨烯量子點(ETAM-GQDs)。同時,也合成了參比石墨烯量子點(CAG-GQDs),即用純的去離子水為溶劑不添加乙醇胺,其他步驟相同[48]。
2.3細胞毒性測試
HL7702細胞在5×105細胞/皿(Corning公司430166)接種。經6 h培養將細胞附著在培養皿后,將基質換成不同濃度的ETAM-GQDs(或CAG-GQDs)的DMEM溶液,并以無GQDs的DMEM培養基作為對照。孵育24 h后,用PBS緩沖溶液洗滌三次以除去多余的GQDs。熒光成像使用蔡司LSM710共聚焦顯微鏡,并選用405 nm激光激發。不同的激發波長熒光成像是通過使用不同的濾光片進行的。
3結果與討論
3.1石墨烯量子點的合成與表征
石墨烯量子點合成過程如圖1所示。使用乙醇胺作為共溶劑,并同時作為表面修飾的前驅體,通過高溫條件下與羧基形成的酰胺鍵形式構建起聚合物框架,后者在高溫條件下脫水脫羧碳化,最終形成石墨烯骨架[32,35]。

圖1 ETAM-GQDs合成過程Fig.1 Schematic illustration of a synthetic route of ETAM-GQDs involving condensation to carbonization
ETAM-GQDs的形貌通過原子力顯微鏡(AFM)來表征。如圖2所示,ETAM-GQDs的直徑分布在20~40 nm的范圍,并且其平均高度為1.6 nm,這些參數與其他方法制備的GQDs類似[20,26]。由于拉曼光譜能為碳納米材料的電子結構提供靈敏而有價值的信息,因而使用拉曼光譜進一步探究了石墨烯量子點的結構[53]。在圖2d拉曼光譜中,位于1 380 cm-1和1 585 cm-1的兩個寬峰分別屬于sp3碳原子振動的D帶與sp2碳原子的G帶,證實了石墨烯量子點的結構中sp2碳原子和sp3碳原子共存[34]。
為了研究ETAM-GQDs表面官能團,對其進行X射線光電子能譜(XPS能譜)表征。如圖2e所示,ETAM-GQDs主要由碳、氧、氮3種元素構成,并且摩爾比為10∶3∶1。高分辨率的C1s XPS光譜圖顯示3種不同化學環境的碳分別在284.6,285.8和287.7電子伏特有峰值,而這些峰值歸屬于C=C,C-O/C-N,C=O,證明了羧酸、羥基和酰胺基團的存在,證實了ETAM成功修飾了石墨烯量子點。

圖2 ETAM-GQDs的AFM圖(a)以及半徑分布(b)和高度分布(c), ETAM-GQDs的Raman譜(d), ETAM-GQDs的XPS譜圖(e)Fig.2 AFM height image of ETAM-GQDs together with the diameter(a) ,height (b) and distributions(c), Raman spectrum of ETAM-GQDs(d), Survey XPS spectrum of ETAM-GQDs(e)
3.2光學性質
圖3顯示了ETAM-GQDs紫外可見(UV-vis)光譜和熒光發射(PL)譜圖。ETAM-GQDs在甲醇中的UV-vis吸收光譜中,吸收峰在312 nm左右并且出現兩個弱肩峰(278 nm和340 nm)。如圖3內嵌圖所示,即使在非常低的濃度,ETAM-GQDs在365 nm的紫外光下仍然顯示明亮的藍光(0.5 mg·mL-1)。ETAM-GQDs的光致發光光譜也顯示為寬峰,并依賴于激發波長而位移。有趣的是,當激發波長由300 nm 逐漸增加至440 nm時,熒光發射峰也紅移到較長波長區,并在400 nm激發獲得了強度最高的發光峰(見圖3)。這個最強發光峰較其它方法制備的小尺寸GQDs位于更長波長,可以解釋為不同尺寸的納米顆粒會導致不同態的分布以及GQDs的帶隙[48]。而ETAM-GQDs在不同激發波長下顯示不同發光性質的行為可以應用在多色成像中,特別是長波長熒光探針,將在下文有所討論。

圖3 ETAM-GQDs的紫外可見光譜和熒光發射譜圖Fig.3 UV-vis absorption and PL spectra of ETAM-GQDs
ETAM-GQDs在365 nm的熒光量子產率是通過以硫酸奎寧作為參比,用相對量子產率計算法測定的,為38.2%[32]。 ETAM-GQDs的高熒光量子產率來源于表面態的增加以及氮元素的摻雜,因為這有利于增強激發態的熒光回遷[41,48]。為了進一步證實這一觀點,通過相同的水熱合成路線得到了一種不含乙醇胺修飾的GQDs(簡稱CAG-GQDs)作為對照。而不修飾乙醇胺的參比石墨烯量子點CAG-GQDs的熒光量子產率在相同的條件下測得為27.0%,這比ETAM-GQDs的38.2%低了約40%。這一結果表明,ETAM的修飾以及共摻雜氮和氧的表面鈍化對其高熒光量子產率是至關重要的。
3.3生物成像
盡管乙醇胺修飾石墨烯量子點在體外顯示出有趣的熒光特性,然而其能否在活體細胞中依然有顯著的熒光活性仍然不得而知,特別是考慮到細胞內復雜的生物化學環境以及潛在活性的水解氧化酶體系[3-9]。因此,為了探索ETAM-GQDs能否在活體細胞中生物成像的應用潛力,實驗使用了人肝細胞(HL7702細胞)在不同濃度ETAM-GQDs下進行了測試[39-40]。如圖4所示,當使用不同濃度的ETAM-GQDs在405 nm激光激發下,熒光強度隨量子點濃度的提高而顯著提高。在濃度為2 mg/mL 時,孵育ETAM-GQDs的 HL7702細胞顯示清晰的細胞結構。

圖4 不同濃度的ETAM-GQDs條件下培養的細胞成像圖Fig.4 Fluorescent images of HL7702 cells incubated without/with ETAM-GQDs at different concentrations
然而,當HL7702細胞在與對照石墨烯量子點CAG-GQDs培養后,幾乎不顯示任何可見熒光(如圖5)。即便是HL7702細胞在CAG-GQDs的高濃度(2 mg/mL)中培養,其他條件與乙醇胺修飾石墨烯量子點一致,仍然未見明顯熒光。考慮到對照樣品CAG-GQDs量子產率比ETAM-GQDs低得多,并且表面化學環境也有所不同,很可能導致其在細胞體內不產生熒光。

圖5 ETAM-GQDs和CAG-GQDs條件下培養的細胞成像圖Fig.5 Fluorescent images of cells incubated with ETAM-GQDs or CAG-GQDs (both at 2 mg/mL) for 24 h
正如之前討論,ETAM-GQDs發光峰值在不同的激發波長下有所差異,因而有潛力應用于多色生物成像技術。同時,使用HL7702細胞作為研究載體,在幾個不同的激發波長下激發,研究ETAM-GQDs的活體熒光特性。如圖6所示,不同的濾光調控的激發波長下,ETAM-GQDs的熒光圖像顯示出不同發光特性,說明了ETAM-GQDs對激發波長依賴性的光致發光行為[42]。其中,用ETAM-GQDs培養的細胞在330~385 nm的濾光片顯示出明顯的藍色熒光信號,而這種現象是與熒光光譜所得到的結果一致。出人意料的是,熒光信號在530~550 nm的濾光片下也很強,可能由于黃色熒光在這種情況下容易被觀察。但是,在460~495 nm和650~725 nm的濾光片下,細胞的熒光信號變得幾乎不可見,這也和熒光發射光譜十分一致。盡管這種光致發光行為的詳盡機理仍不清楚,但是活細胞的熒光穩定性仍然使ETAM-GQDs具有體外生物測試和醫學成像的潛在應用。

圖6 在ETAM-GQDs培養下的多色細胞成像圖,圖中各濾光片對應波段分別為:WU:330~385nm;WIG:530~550nm;WIBA:460~495nm;CY5:650~725nm。Fig.6 Fluorescent images of HL7702 cells incubated with ETAM-GQDs (2 mg/mL) taken with different filters.Including WU(transmission range:330~385nm),WIBA(460~495nm)and CY5(650~725nm).
4結論
(1)合成了新型乙醇胺修飾的石墨烯量子點。通過AFM表征,確定出所制備ETAM-GQDs的直徑分布在20~40 nm的范圍,且平均直徑為~30 nm,平均高度為~1.6 nm。同時通過XPS證明了乙醇胺成功地修飾在石墨烯量子點上。
(2)對ETAM-GQDs進行了紫外可見光譜等光學表征,在365 nm 激光激發下,產物顯示出明亮的藍色,而熒光發射光譜也進一步顯示了產物的熒光特性。另外通過合成參比石墨烯量子點,發現了乙醇胺修飾后量子產率提高了約40%,達到了38.2%(以硫酸奎寧為基準)。
(3)通過將產物與HL7702細胞共培養,研究了ETAM-GQDs和對照CAG-GQDs在活體細胞的生物成像,并且對ETAM-GQDs培養的HL7702細胞進行了多色成像研究,表明乙醇胺表面修飾后的ETAM-GQDs具有較好的生物相容性和熒光活性。這些結果將有利于未來碳基量子點的研究和生物應用。
參考文獻References
[1]Xu X,Ray R,Gu Y,etal. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments[J].JournaloftheAmericanChemicalSociety,2004,126(40): 12 736-12 737.
[2]Sun Y P,Zhou B,Lin Y,etal. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence[J].JournaloftheAmericanChemicalSociety,2006,128(24): 7 756-7 757.
[3]Wang Y,Hu A. Carbon Quantum Dots: Synthesis,Properties and Applications[J].JournalofMaterialsChemistryC,2014,2(34): 6 921-6 939.
[4]Lin L,Rong M,Luo F,etal. Luminescent Graphene Quantum Dots as New Fluorescent Materials for Environmental and Biological Applications[J].TrACTrendsinAnalyticalChemistry,2014,54: 83-102.
[5]Bacon M,Bradley S J,Nann T. Graphene Quantum Dots[J].Particle&ParticleSystemsCharacterization,2014,31(4): 415-428.
[6]Luo P G,Yang F,Yang S T,etal. Carbon-based Quantum Dots for Fluorescence Imaging of Cells and Tissues[J].RSCAdvances, 2014,4(21): 10 791-10 807.
[7]Li H,Kang Z,Liu Y,etal. Carbon Nanodots: Synthesis, Properties and Applications[J].JournalofMaterialsChemistry, 2012,22(46): 24 230-24 253.
[8]Shen J,Zhu Y,Yang X,etal. Graphene Quantum Dots: Emergent Nanolights for Bioimaging, Sensors, Catalysis and Photovoltaic Devices[J].ChemicalCommunications,2012,48(31): 3 686-3 699.
[9]Baker S N,Baker G A. Luminescent Carbon Nanodots: Emergent Nanolights[J].AngewandteChemieInternationalEdition,2010, 49(38): 6 726-6 744.
[10]Cao L,Wang X,Meziani M J,etal. Carbon Dots for Multiphoton Bioimaging[J].JournaloftheAmericanChemicalSociety,2007, 129(37): 11 318-11 319.
[11]Chen B,Li F,Li S,etal. Large Scale Synthesis of Photoluminescent Carbon Nanodots and Their Application for Bioimaging[J].Nanoscale,2013, 5(5): 1 967-1 971.
[12]Gokhale R,Singh P. Blue Luminescent Graphene Quantum Dots by Photochemical Stitching of Small Aromatic Molecules: Fluorescent Nanoprobes in Cellular Imaging[J].Particle&ParticleSystemsCharacterization, 2014,31(4): 433-438.
[13]Zhu L,Yin Y,Wang C F,etal. Plant Leaf-Derived Fluorescent Carbon Dots for Sensing,Patterning and Coding[J].JournalofMaterialsChemistryC,2013,1(32): 4 925-4 932.
[14]Zhang M,Yao Q,Guan W,etal. Layered Double Hydroxide-Supported Carbon Dots as an Efficient Heterogeneous Fenton-like Catalyst for Generation of Hydroxyl Radicals[J].TheJournalofPhysicalChemistryC,2014,118(19): 10 441-10 447.
[15]Li H,Liu R,Kong W,etal. Carbon Quantum Dots with Photo-Generated Proton Property as Efficient Visible Light Controlled acid Catalyst[J].Nanoscale,2014,6(2): 867-873.
[16]Chung W,Jung H,Lee C H,etal. Extremely High Color Rendering White Light from Surface Passivated Carbon Dots and Zn-doped AgInS 2 Nanocrystals[J].JournalofMaterialsChemistryC, 2014,2(21): 4 227-4 232.
[17]Zhu Z,Ma J,Wang Z,etal. Efficiency Enhancement of Perovskite Solar Cells Through Fast Electron Extraction: The Role of Graphene Quantum Dots[J].JournaloftheAmericanChemicalSociety,2014,136(10): 3 760-3 763.
[18]Kim J K, Park M J, Kim S J,etal. Balancing Light Absorptivity and Carrier Conductivity of Graphene Quantum Dots for High-Efficiency Bulk HeteroJunction Solar Cells[J].ACSnano, 2013, 7(8): 7 207-7 212.
[19]Wang L,Wang Y,Xu T,etal. Gram-Scale Synthesis of Single-Crystalline Graphene Quantum Dots with Superior Optical Properties[J].Naturecommunications,2014,5.
[20]Ponomarenko L A, Schedin F, Katsnelson M I,etal. Chaotic Dirac Billiard in Graphene Quantum Dots[J].Science,2008, 320(5 874): 356-358.
[21]Zhu S,Tang S,Zhang J,etal. Control the Size and Surface Chemistry of Graphene for the Rising Fluorescent Materials[J].ChemicalCommunications,2012,48(38): 4 527-4 539.
[22]Pan D,Zhang J,Li Z,etal. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots[J].AdvancedMaterials,2010,22(6):734-738.
[23]Li L,Wu G,Yang G,etal. Focusing on Luminescent Graphene Quantum Dots: Current Status and Future Perspectives[J].Nanoscale,2013,5(10): 4 015-4 039.
[24]Zhou X,Zhang Y,Wang C,etal. Photo-Fenton Reaction of Graphene Oxide: a New Strategy to Prepare Graphene Quantum Dots for DNA Cleavage[J].ACSNano,2012,6(8): 6 592-6 599.
[25]Yan X,Cui X,Li B,etal. Large,Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics[J].Nanoletters,2010,10(5): 1 869-1 873.
[26]Lin L,Zhang S. Creating High Yield Water Soluble Luminescent Graphene Quantum Dots Via Exfoliating and Disintegrating Carbon Nanotubes and Graphite Flakes[J].ChemicalCommunications, 2012,48(82):10 177-10 179.
[27]Lu J,Yeo P S E,Gan C K,etal. Transforming C60 Molecules into Graphene Quantum Dots[J].NatureNanotechnology,2011, 6(4): 247-252.
[28]Li Y,Zhao Y,Cheng H,etal. Nitrogen-Doped Graphene Quantum Dots with Oxygen-Rich Functional Groups[J].JournaloftheAmericanChemicalSociety,2011,134(1):15-18.
[29]Shen J,Zhu Y,Chen C,etal. Facile Preparation and Upconversion Luminescence of Graphene Quantum Dots[J].ChemicalCommunications,2011,47(9): 2 580-2 582.
[30]Li Q,Zhang S,Dai L,etal. Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction[J].JournaloftheAmericanChemicalSociety,2012,134(46): 18 932-18 935.
[31]Liu R,Wu D,Feng X,etal. Bottom-up Fabrication of Photoluminescent Graphene Quantum Dots with Uniform Morphology[J].JournaloftheAmericanChemicalSociety,2011, 133(39): 15 221-15 223.
[32]Zhu S,Meng Q,Wang L,etal. Highly Photoluminescent Carbon Dots for Multicolor Patterning,Sensors and Bioimaging[J].AngewandteChemie,2013,125(14): 4 045-4 049.
[33]Wang J,Wang C F,Chen S. Amphiphilic Egg-Derived Carbon Dots: Rapid Plasma Fabrication,Pyrolysis Process and Multicolor Printing Patterns[J].AngewandteChemie,2012,124(37): 9 431-9 435.
[34]Wu X,Tian F,Wang W,etal. Fabrication of Highly Fluorescent Graphene Quantum Dots Using L-glutamic Acid for in Vitro/in Vivo Imaging and Sensing[J].JournalofMaterialsChemistryC,2013, 1(31): 4 676-4 684.
[35]Huang J J,Zhong Z F,Rong M Z,etal. An Easy Approach of Preparing Strongly Luminescent Carbon Dots and Their Polymer Based Composites for Enhancing Solar Cell Efficiency[J].Carbon,2014,70: 190-198.
[36]Qu S,Wang X,Lu Q,etal. A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots[J].AngewandteChemie,2012,124(49): 12 381-12 384.
[37]Li H,He X,Kang Z,etal. Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design[J].AngewandteChemieInternationalEdition,2010,49(26): 4 430-4 434.
[38]Yang S T,Wang X,Wang H,etal. Carbon Dots as Nontoxic and High-Performance Fluorescence Imaging agents[J].TheJournalofPhysicalChemistryC,2009,113(42): 18 110-18 114.
[39]Sun Y,Wang S,Li C,etal. Large Scale Preparation of Graphene Quantum Dots from Graphite with Tunable Fluorescence Properties[J].PhysicalChemistryChemicalPhysics,2013, 15(24): 9 907-9 913.
[40]Zardini H Z,Davarpanah M,Shanbedi M,etal. Microbial Toxicity of Ethanolamines-Multiwalled Carbon Nanotubes[J].JournalofBiomedicalMaterialsResearchPartA,2014,102(6): 1 774-1 781.
[41]Gupta V,Chaudhary N,Srivastava R,etal. Luminscent Graphene Quantum Dots for Organic Photovoltaic Devices[J].JournaloftheAmericanChemicalSociety,2011,133(26): 9 960-9 963.
[42]Wang H,Wang H Y,Gao B R,etal. Exciton Diffusion and Charge Transfer Dynamics in Nano Phase-Separated P3HT/PCBM Blend Films[J].Nanoscale,2011,3(5): 2 280-2 285.
[43]Xue L,Li Y,Dong F,etal. Donor-Acceptor Alternating Copolymers as Donor Materials for Bulk-Heterojunction Solar Cells: Effects of Molecular Structure on Film Morphology and Device Performance[J].Nanotechnology,2010,21(15): 155 201.
[44]Liu A,Dirsch O,Fang H,etal. HMGB1 Translocation and Expression is Caused by Warm Ischemia Reperfusion Injury,but not by Partial Hepatectomy in Rats[J].ExperimentalandMolecularPathology,2011,91(2): 502-508.
[45]Dong Y,Shao J,Chen C,etal. Blue Luminescent Graphene Quantum Dots and Graphene Oxide Prepared by Tuning the Carbonization Degree of Citric Acid[J].Carbon,2012,50(12): 4 738-4 743.
[46]Zhu S,Zhang J,Tang S,etal. Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up-Conversion Bioimaging Applications[J].AdvancedFunctionalMaterials,2012,22(22): 4 732-4 740.
[47]Yeh T F,Teng C Y,Chen S J,etal. Nitrogen-Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination[J].AdvancedMaterials,2014,26(20): 3 297-3 303.
[48]Dong Y,Pang H,Yang H B,etal. Carbon-Based Dots Co-doped with Nitrogen and Sulfur for High Quantum Yield and Excitation-Independent Emission[J].AngewandteChemieInternationalEdition,2013,52(30): 7 800-7 804.
[49]Anilkumar P,Wang X,Cao L,etal. Toward Quantitatively Fluorescent Carbon-Based “Quantum” Dots[J].Nanoscale,2011, 3(5): 2 023-2 027.
[50]Sun Y P,Wang X,Lu F,etal. Doped Carbon Nanoparticles as a New Platform for Highly Photoluminescent Dots[J].TheJournalofPhysicalChemistryC,2008,112(47): 18 295-18 298.
[51]Sevilla M,Fuertes A B. The Production of Carbon Materials by Hydrothermal Carbonization of Cellulose[J].Carbon,2009, 47(9): 2 281-2 289.
[52]Sevilla M,Fuertes A B. Chemical and Structural Properties of Carbonaceous Products Obtained by Hydrothermal Carbonization of Saccharides[J].Chemistry-AEuropeanJournal,2009,15(16): 4 195-4 203.
[53]Kang H,Kulkarni A,Stankovich S,etal. Restoring Electrical Conductivity of Dielectrophoretically Assembled Graphite Oxide Sheets by Thermal and Chemical Reduction Techniques[J].Carbon, 2009,47(6): 1 520-1 525.
[54]Liang J,Jiao Y,Jaroniec M,etal. Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance[J].AngewandteChemieInternationalEdition,2012,51(46): 11 496-11 500.
[55]Choi C H,Chung M W,Park S H,etal. Additional Doping of Phosphorus and/or Sulfur into Nitrogen-Doped Carbon for Efficient Oxygen Reduction Reaction in Acidic Media[J].PhysicalChemistryChemicalPhysics,2013,15(6):1 802-1 805.
[56]Wohlgemuth S A,White R J,Willinger M G,etal. A One-Pot Hydrothermal Synthesis of Sulfur and Nitrogen Doped Carbon Aerogels with Enhanced Electrocatalytic Activity in the Oxygen Reduction Reaction[J].GreenChemistry,2012,14(5): 1 515-1 523.
[57] Wu W,Zhang Z,Liebeskind L S. In Situ Carboxyl Activation Using a Silatropic Switch: a New Approach to Amide and Peptide Constructions[J].JournaloftheAmericanChemicalSociety, 2011,133(36):14 256-14 259.
[58]Somers R C,Bawendi M G,Nocera D G. CdSe Nanocrystal Based Chem-/Bio-Sensors[J].ChemicalSocietyReviews,2007,36(4): 579-591.
(編輯王方)
One-Pot Synthesis and Bioimaging Application ofEthanolamine-Grafted Graphene Quantum Dots
ZENG Minxiang,CHEN Xiang,XIE Yuqing,GUAN Jian,ZHEN Jieming,
ZHU Xianjun,YANG Shangfeng
(CAS Key Laboratory of Materials for Energy Conversion,Hefei National Laboratory for Physical Sciences at Microscale,
University of Science and Technology of China (USTC),Hefei 230026,China)
Abstract:Ethanolamine-grafted graphene quantum dots (ETAM-GQDs) as a novel type of carbon-based quantum dots have been successfully synthesized via a facile one-pot hydrothermal approach,and show potential application in bioimaging.The hydrothermal synthesis of ETAM-GQDs was accomplished by introducing ethanolamine (ETAM) as the co-solvent blending deionized water while citric acid and glycine are used as the main carbon source and bridge for condensation respectively. The size distribution of ETAM-GQDs was determined by AFM and TEM. The photoluminescent (PL) quantum yield of ETAM-GQDs was measured to be 38.2% under 365 nm light excitation by using quinine sulphate as a standard. The biocompatibility of ETAM-GQDs evaluated by MTT assay indicated the low toxicity of ETAM-GQDs at concentrations below 1 mg/mL. Fluorescent imaging of living HL7702 cells incubated with ETAM-GQDs demonstrated that ETAM-GQDs can be applied as an effective bioimaging agent.
Key words:graphene;quantum dots;photoluminescence;bioimaging
中圖分類號:O69
文獻標識碼:A
文章編號:1674-3962(2015)11-0841-06
青年園地
收稿日期:2015-07-15
基金項目:國家自然科學基金資助項目(21371164)
第一作者:曾敏翔,男,1992年生,博士研究生
通訊作者:楊上峰,男,1975年生,教授,博士生導師,Email:sfyang@ustc.edu.cn
DOI:10.7502/j.issn.1674-3962.2015.11.06