摘 要:問題對于數學學習至關重要,在創設問題時要根據“最近發展區”理論,以問題作為教學的生長點,在問題驅動下引領學生自主探究和合作交流,發展學生的應用意識和創新能力,構建起高效數學課堂,使數學課堂更加異彩紛呈。
關鍵詞:小學數學;問題驅動;高效課堂
中圖分類號:G623.5 文獻標識碼:A 文章編號:1009-010X(2015)32-0072-02
美國數學家哈爾莫斯曾說過:“問題是數學的心臟。”在數學課堂教學時,以問題為驅動激發學生去觀察、實踐與探究,可以調動學生學習的積極性,拓展學生的思維空間,從而提高教學的質量和學生學習的效率。問題對于數學學習至關重要,在創設問題時要根據“最近發展區”理論,以問題作為教學的生長點,在問題驅動下引領學生自主探究和合作交流,發展學生的應用意識和創新能力,構建起高效數學課堂。
一、情境式問題驅動,叩開學生求知的心扉
問題是激發和引領課堂教學的重要動力來源,是師生、生生之間進行知識和情感傳遞的重要載體。教師在進行情境設置時要力求發揮出問題的驅動作用,在激發學生學習興趣的同時,啟迪學生探究知識的心理欲望,叩開學生求知的心扉,進而將知識與情感緊密結合在一起。教師在創設情境時既要遵循課程標準和教材內容的要求,不降低,不拔高,還要考慮到學生的認知發展水平和已有經驗,確保情境式問題既能調動起學生參與的熱情,又能真正有利于課堂的進一步學習,從而將教學內容和問題驅動結合起來,使學生在問題情境中自主探究、合作交流,提高課堂教學的實效和培養學生積極向上的情感。
如,在學習蘇教版六年級上冊“長方體和正方體”時,教師給學生設計了這樣一個問題情境:小紅的媽媽要過生日了,小紅打算給媽媽送一份禮物表示自己的孝心,從節約和表示自己真情實感的角度考慮,小紅決定自己制作禮品盒,初步計劃禮品盒的長、寬、高分別為30cm、10cm和20cm,那么,做這個禮品盒至少需要多少平方厘米的硬紙板?如果要在禮品盒的邊線上用彩紙裝飾,則需要多少厘米長的彩紙?裝好禮物后小紅打算用彩帶繩把它包扎起來,包扎的方式多樣,分別需要的繩長是多少?這樣的問題既能激發學生對于長方體表面積與棱長和的探究,又為學生提供了自主發揮才能的舞臺,讓學生從實用、美觀等方面設計包扎的方式,極大調動起了學生求知的欲望。同時,問題中為媽媽制作生日禮物無形中滲透了愛的教育,讓學生明白了孝敬父母、感恩父母的重要性,也讓學生明白好好學習就是對父母的最好報答。數學教學不僅要讓學生掌握知識與技能,還需要培養學生的情感和價值觀,讓學生在學習數學知識的同時懂得更多做人的道理。
二、探究式問題驅動,拓展學生思維的空間
具有探究性的數學問題才是有效的問題,也是最能發展學生思維能力的問題。在課堂教學時以探究性問題為驅動,可以激活學生的思維潛力,讓學生以飽滿的熱情投入到學習活動中。在出示問題后,教師要給學生留出充足的時間進行思考與交流,切不可急于分析和講解,探究性問題的實質在于充分發揮學生的主體作用,讓學生在數學活動中主動地發現問題、提出問題,并分析和解決問題,充分展現出學生思維的過程。學生在探究活動中不僅能夠獲得知識,還能夠學會思維的方式,感悟其中涉及的思想方法,從而積累豐富的數學活動經驗,為下一步學習奠定基礎。
如,在學習五年級上冊“多邊形的面積”時,對于平行四邊形的面積,教師可以引導學生將其與長方形進行對比,找出其中的相同與不同,然后提出問題讓學生進行探究。如何將平行四邊形轉化為長方形?在轉化過程中誰與誰相等?你得到的平行四邊形面積的公式是什么?通過這樣的問題激發學生探究的欲望,明確活動的方向,在動手操作中感知平行四邊形與長方形的對應關系,從而在經歷過程的同時得出了結果。學生在動手操作中先明確要轉化為長方形則必須有直角,也就是要作平行四邊形的高,沿高剪下再通過平移就可以得出一個長方形。這樣,學生的精力就集中在了轉化上,只要將作出的高剪下就可以拼成一個長方形,由此學生也就明白了操作方法不止一種,高有無數條但長度是相等的,從而也就總結得出了平行四邊形面積公式。以此類推,又可以通過轉化得出三角形和梯形的面積公式。由此可見,給學生留出思維的空間,則可以讓學生觸類旁通地解決相關的更多問題,教是為學服務的,學生學會了思想方法才是最重要的。
三、設疑式問題驅動,提升學生創新的品質
古人云:“學貴有疑,小疑則小進,大疑則大進。”在課堂教學時,教師要培養學生敢于質疑的良好品質,讓學生大膽挑戰教材與教師,說出自已的獨到認識與見解,從而提升學生的創新思維能力。數學學習的過程就是一個不斷質疑與釋疑的過程,數學學習活動中既要求教師提出疑問,引導學生進行思考與解答,更重要的是學生提出疑問,正所謂“提出一個問題往往比解決一個問題更重要”。以設疑式問題為驅動,可以真正讓學生動起來,思維活躍起來,從而在提高思維能力的同時,培養良好的創新品質和創新精神,構建優質高效、充滿生機和活力的數學課堂。
如,在學習六年級下冊“圓柱、圓錐”時,教師可以先設置一些帶有疑問性的問題,如“圓錐的體積為什么等于圓柱體積的三分之一”?學生通過動手操作用同底等高的圓柱體容器和圓錐體容器盛水可以初步得出結論,此時就可以得出所需要的知識。接著教師可以讓學生再從同底不同高、同高不同底等容器進行試驗,看看能夠得出什么樣的結果,由此得出結論:等底等高的圓錐體的體積是圓柱體體積的三分之一。這時有的學生提出了疑問:“圓球的體積又會是什么樣的呢?”這個問題問得很好,也問得比較恰當,因為同是探究與圓有關的問題,教師還是可以讓學生通過實驗來獲得初步的結論,因為命題的證明屬于高中的內容,小學生是根本做不到的,這里只需要激發起學生的興趣,讓學生感受到數學的邏輯嚴密、語言準確即可。但可以看出學生有疑,這才是教學最大的成功,也才是學生創新思維的最好體現。
總之,在數學課堂教學中以問題為驅動,可以使學生的思維在主動參與中,呈現出逐層推進、遞進上升的良好態勢,從而讓學生在不斷地智力發展中,積累起更多的數學活動經驗,這對于學生全面深入地掌握知識與技能是非常有必要的。同時,由于學生的全力參與和交流互動,提高了課堂教學的活力,增強了課堂教學的效率,使數學課堂更加異彩紛呈。