牛海英(綜述),王占黎(審校)
(1.包頭醫(yī)學(xué)院臨床醫(yī)學(xué)系,內(nèi)蒙古 包頭 014010; 2.包頭醫(yī)學(xué)院第一附屬醫(yī)院檢驗(yàn)科,內(nèi)蒙古 包頭 014010)
?
腺苷酸活化蛋白激酶途徑與腫瘤的研究進(jìn)展
牛海英1△(綜述),王占黎2※(審校)
(1.包頭醫(yī)學(xué)院臨床醫(yī)學(xué)系,內(nèi)蒙古 包頭 014010; 2.包頭醫(yī)學(xué)院第一附屬醫(yī)院檢驗(yàn)科,內(nèi)蒙古 包頭 014010)
摘要:腺苷酸活化蛋白激酶(AMPK)是哺乳動(dòng)物細(xì)胞中高度保守的蛋白質(zhì),是細(xì)胞的重要的代謝感受器。哺乳動(dòng)物雷帕霉素靶蛋白(mTOR)信號(hào)通路,是一種不典型的絲/蘇氨酸激酶,在進(jìn)化中也具有高度保守性,主要通過(guò)調(diào)控蛋白合成來(lái)調(diào)節(jié)細(xì)胞的生長(zhǎng),mTOR激酶通過(guò)多種信號(hào)通路來(lái)實(shí)現(xiàn)對(duì)細(xì)胞生長(zhǎng)的調(diào)節(jié)作用,其中營(yíng)養(yǎng)信號(hào)激活通路為細(xì)胞外的氨基酸通路LKB1-AMPK途徑。二甲雙胍(LKB1/AMPK的激活劑),可抑制mTOR的活性,從而可以應(yīng)用于多種腫瘤的治療,目前研究表明AMPK信號(hào)通路及其相關(guān)的信號(hào)通路與多種腫瘤的發(fā)生、發(fā)展有關(guān)。
關(guān)鍵詞:腺苷酸活化蛋白激酶;肝激酶B1;雷帕霉素靶蛋白信號(hào)途徑;二甲雙胍;腫瘤
腺苷酸活化蛋白激酶(adenosine monophosphate activated protein kinuse,AMPK)是由3個(gè)亞基(α、β和γ)及12個(gè)蛋白激酶(BRSK1,BRSK2,NUAK1,NUAK2,QIK,QSK,SIK,MARK1,MARK2,MARK3,MARK4和MELK)組成。其中α亞單位催化亞基家族包括5個(gè)成員,AMPK-α1、AMPK-α2、MELK、NUAK2/SNARK和NUAK1/ARK5。其中AMPK-α1和AMPK-α2已被確定為人類激酶組的相關(guān)激酶。此催化亞基的每個(gè)成員都與腫瘤的形成和轉(zhuǎn)移密切相關(guān)[1]。AMPK各亞基組織分布不同,α1分布廣,主要分布于腎臟、肝臟、肺臟、心臟和腦部,α2主要分布于骨骼肌、心臟和肝臟,也存在于腦神經(jīng)元內(nèi),而且α2亞基含量遠(yuǎn)高于α1。現(xiàn)就AMPK途徑與腫瘤的研究進(jìn)行綜述。
1AMPK信號(hào)途徑與消化系統(tǒng)腫瘤
AMPK可通過(guò)調(diào)節(jié)膽固醇代謝、脂肪酸合成及蛋白質(zhì)合成,影響消化系統(tǒng)腫瘤細(xì)胞的生長(zhǎng)和增殖;通過(guò)調(diào)節(jié)細(xì)胞周期而使其停滯。活化的AMPK可激活含半胱氨酸的天冬氨酸蛋白水解酶9(cysteinyl aspartate specific proteinase-9,caspase-9)進(jìn)而誘導(dǎo)消化系統(tǒng)腫瘤細(xì)胞凋亡;AMPK還與消化系統(tǒng)腫瘤的新生血管形成及侵襲轉(zhuǎn)移等密切相關(guān)。目前主要認(rèn)為是通過(guò)羥甲基戊二酸單酰輔酶A還原酶、乙酰-輔酶A羧化酶、脂肪酸合酶及雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)直接抑制腫瘤的增殖,誘導(dǎo)細(xì)胞周期停滯及細(xì)胞凋亡;還可通過(guò)間接抑制腫瘤的侵襲和轉(zhuǎn)移、血管生成等來(lái)抑制腫瘤增殖,阻止腫瘤進(jìn)展。
1.1肝癌Martínez-López等[2]通過(guò)研究甘氨酸N-甲基轉(zhuǎn)移酶在小鼠肝癌細(xì)胞中的作用,發(fā)現(xiàn)肝激酶B1(liver kinase B1,LKB1)是通過(guò)AMPK信號(hào)途徑和Ras信號(hào)途徑來(lái)調(diào)節(jié)肝癌細(xì)胞的增殖和轉(zhuǎn)化的。甘氨酸N-甲基轉(zhuǎn)移酶在肝癌細(xì)胞中表達(dá)下調(diào),增加了LKB1和Ras的活性并且活化Ras,導(dǎo)致Ras自身的鳥(niǎo)苷三磷酸(guanosine triphosphate,GTP)酶活性下降,使得Ras-GTP不能變成Ras-GDP,而始終處于GTP結(jié)合的狀態(tài),造成膜受體酪氨酸蛋白激酶信號(hào)傳遞途徑(Ras-Raf-MAPK)過(guò)度激活,從而導(dǎo)致細(xì)胞的過(guò)度增殖與腫瘤的發(fā)生。而阻止這一途徑的藥物可用于肝硬化發(fā)展到肝癌的治療。
非酒精性脂肪性肝病的特點(diǎn)是脂肪肝、脂肪變性和炎癥,可能進(jìn)展為肝硬化和肝癌。近來(lái)有證據(jù)表明,腫瘤抑制基因如p53、pRb、甘露糖-6-磷酸酶/類胰島素生長(zhǎng)因子受體和上皮鈣黏素參與肝癌的發(fā)生和發(fā)展[3]。LKB1基因的失活增加了癌癥的風(fēng)險(xiǎn),LKB1也可發(fā)揮抗凋亡作用,在腫瘤細(xì)胞中可以組成并活性化蛋白激酶B,并能介導(dǎo)p53的磷酸化。這表明LKB1可能有潛在的致癌性,它可以直接磷酸化AMPK-α從而激活A(yù)MPK,AMPK下調(diào)脂肪合成酶和mTOR的表達(dá),進(jìn)而抑制腫瘤細(xì)胞的增殖[4]。因此,LKB1可作為治療靶點(diǎn)進(jìn)一步深入研究。
1.2胃癌Kim等[5]為確定亞洲人群胃癌的分子基礎(chǔ),采用RNA測(cè)序方法測(cè)定胃癌和非胃癌標(biāo)本,產(chǎn)生6.8億個(gè)序列,多層分析識(shí)別多種類型胃癌的不同階段,包括經(jīng)常性的差異表達(dá)基因、體細(xì)胞突變和關(guān)鍵差異表達(dá)的微RNA的轉(zhuǎn)錄畸變,確定了AMPK-α可作為潛在的治療靶點(diǎn)。
1.3結(jié)腸癌Martínez-Reyes等[6]研究提示在新陳代謝活躍的癌癥中,線粒體功能障礙可促進(jìn)腫瘤的進(jìn)展,而AMPK和GCN2-ATF4信號(hào)可抑制結(jié)腸癌癥細(xì)胞中的線粒體功能,從而阻止癌癥的進(jìn)展。
2AMPK信號(hào)途徑與血液系統(tǒng)腫瘤
2.1白血病白血病的化學(xué)治療雖已取得了很大發(fā)展,但仍有許多類型的白血病不能治愈,特別是多種耐藥機(jī)制的存在。研究表明LKB1/AMPK信號(hào)途徑可誘導(dǎo)細(xì)胞周期阻滯,也可誘導(dǎo)半胱天冬酶依賴的細(xì)胞凋亡和造血系統(tǒng)腫瘤細(xì)胞自噬[7]。哺乳動(dòng)物mTOR的絲氨酸/蘇氨酸激酶,有mTORC1和mTORC2兩個(gè)催化亞基。下游mTORC1的信號(hào)通過(guò)控制細(xì)胞存活和增殖有關(guān)基因的信使RNA翻譯,對(duì)白血病細(xì)胞發(fā)揮生物學(xué)作用。通過(guò)上調(diào)LKB1/AMPK途徑,可下調(diào)mTORC1的活性。在急性T淋巴細(xì)胞白血病患者,mTORC1的活性增強(qiáng),二甲雙胍因可抑制mTOR的活性而用于該病的治療[8]。二甲雙胍和5-氨基咪唑-4-甲酰胺核糖核苷酸等AMPK活化劑可抑制BCR-ABL(breakpoint cluster region-Abelson)融合蛋白的表達(dá)及細(xì)胞的mTOR通路的激活,因此AMPK可作為有BCR-ABL融合蛋白表達(dá)的惡性腫瘤的治療新靶點(diǎn),應(yīng)用AMPK激活劑有可能治療難治性慢性粒細(xì)胞白血病和Ph(+)急性淋巴細(xì)胞白血病[9]。二甲雙胍針對(duì)白血病造血干細(xì)胞的治療,有望治愈白血病。激活LKB1/AMPK軸的藥物具有低毒性的特點(diǎn),可能會(huì)成為某些類型的血液系統(tǒng)惡性腫瘤的治療新選擇[9]。
2.2淋巴瘤AMPK作為癌癥細(xì)胞能量狀態(tài)的主要傳感器,其激活劑可作為抗癌藥物增敏劑。二甲雙胍(AMPK激活劑)對(duì)于B-細(xì)胞淋巴瘤和T-細(xì)胞淋巴瘤的腫瘤細(xì)胞生長(zhǎng)具有潛在的抑制作用。二甲雙胍在體內(nèi)誘導(dǎo)AMPK的活化,mTOR信號(hào)途徑的抑制可顯著阻止小鼠淋巴瘤異種移植物腫瘤的生長(zhǎng)。激活mTOR信號(hào)途徑失調(diào)的淋巴瘤患者的AMPK,可抑制腫瘤細(xì)胞生長(zhǎng),提高治療效果[10]。
2.3多發(fā)性骨髓瘤活化的活性氧/AMPK信號(hào)通路介導(dǎo)的非瑟酮可誘導(dǎo)多發(fā)性骨髓瘤U266細(xì)胞的凋亡,非瑟酮可激活A(yù)MPK,以及作為乙酰輔酶A羧化酶的底物,并降低蘇氨酸蛋白激酶和mTOR的磷酸化。研究表明在多發(fā)性骨髓瘤的U266細(xì)胞中,非瑟酮通過(guò)AMPK途徑來(lái)誘導(dǎo)細(xì)胞凋亡[11]。ARK5(AMPK-α催化亞基家族中的一員)介導(dǎo)的促腫瘤侵襲行為在多發(fā)性骨髓瘤細(xì)胞系中得到進(jìn)一步證實(shí)[12]。
3AMPK信號(hào)途徑與生殖泌尿系統(tǒng)腫瘤
3.1宮頸癌AMPK激活劑5-氨基咪唑-4-甲酰胺核糖核苷酸(5-Aminoimidazole-4-carboxsmide 1-β-D-ribofuranoside, AICAR)通過(guò)激活LKB1,抑制腫瘤細(xì)胞生長(zhǎng)。AICAR作為一種有效的治療藥物已被廣泛應(yīng)用于LKB1突變和缺失的癌癥中。而A23187是AMPK激活劑的替代藥物,通過(guò)激活另一個(gè)AMPK的上游激酶-鈣調(diào)蛋白依賴的蛋白激酶(calmodulin-dependent protein kinase kinases,CaMKKβ),從而抑制宮頸癌細(xì)胞的生長(zhǎng)。Yu等[13]通過(guò)宮頸癌細(xì)胞模型證實(shí)了,AICAR和A23187的聯(lián)合治療能夠進(jìn)一步提高對(duì)Hela細(xì)胞、CaSki和C41的生長(zhǎng)抑制效應(yīng),并且AICAR與A23187通過(guò)抑制AMPK/mTOR信號(hào)活性對(duì)宮頸癌細(xì)胞發(fā)揮抗增殖效應(yīng)。A23187可能是另一種潛在的治療藥物,用于LKB1缺失的腫瘤細(xì)胞。
3.2卵巢癌AMPK及其上游激酶LKB1、CaMKK、轉(zhuǎn)化生長(zhǎng)因子β活化的蛋白激酶和絲氨酸/蘇氨酸激酶的活化對(duì)腫瘤細(xì)胞的增殖、生長(zhǎng)、侵襲和轉(zhuǎn)移具有復(fù)雜的調(diào)控作用,AMPK在多種腫瘤細(xì)胞中發(fā)揮抑制細(xì)胞增生和誘導(dǎo)細(xì)胞凋亡的作用,其中包括對(duì)順鉑耐藥的卵巢癌細(xì)胞,因此對(duì)AMPK信號(hào)轉(zhuǎn)導(dǎo)通路的研究有望為卵巢癌的化學(xué)治療尋找新靶點(diǎn)[14]。
3.3前列腺癌前列腺癌是西方國(guó)家男性癌癥死亡的主要原因之一。植物化學(xué)成分二苯乙烯類化合物(紫檀芪),可減少前列腺癌的風(fēng)險(xiǎn)。紫檀芪既可以激活A(yù)MPK信號(hào)途徑,抑制p53陽(yáng)性和陰性的人前列腺癌細(xì)胞生長(zhǎng),也可使AMPK的活性降低,并促使脂質(zhì)合成的相關(guān)酶的表達(dá),例如脂肪酸合酶和乙酰輔酶A羧化酶,從而抑制脂肪的生成。在p53陽(yáng)性的前列腺癌細(xì)胞,紫檀芪可將細(xì)胞周期阻斷在G1期,通過(guò)誘導(dǎo)p53的表達(dá),上調(diào)p21的表達(dá)。膳食暴露紫檀芪對(duì)前列腺癌的治療有效[15]。環(huán)孢素A對(duì)各種癌癥包括前列腺癌均有抗腫瘤作用,研究發(fā)現(xiàn),環(huán)孢素A通過(guò)CaMKKβ/AMPK介導(dǎo)抑制mTORC1信號(hào)轉(zhuǎn)導(dǎo),通過(guò)mTORC1信號(hào)途徑抑制誘導(dǎo)G1期阻滯,減弱細(xì)胞生長(zhǎng),進(jìn)而抑制前列腺癌細(xì)胞的生長(zhǎng)[16]。晚期前列腺癌患者即便是應(yīng)用雄激素消融治療也可能在1~2年內(nèi)復(fù)發(fā)。CaMKKβ介導(dǎo)的生長(zhǎng)調(diào)節(jié)激酶AMPK在激活雄激素依賴的前列腺癌的細(xì)胞遷移和侵襲中發(fā)揮重要的生物學(xué)作用,抑制的CaMKKβ/AMPK信號(hào)途徑,可抑制雄激素依賴的前列腺癌細(xì)胞的遷移和侵襲。因此,這些酶可作為前列腺癌治療的潛在靶點(diǎn)[17]。
3.4膀胱癌熊果酸具有抗腫瘤特性,研究發(fā)現(xiàn),呈劑量依賴性熊果酸可誘導(dǎo)人膀胱癌T24細(xì)胞生長(zhǎng)抑制和細(xì)胞凋亡,并激活A(yù)MPK信號(hào)途徑,AICAR或組成性激活突變基因的AMPK具有類似熊果酸的效果,因此由熊果酸活化的AMPK可激活c-Jun氨基端激酶,抑制mTORC1的信號(hào)下調(diào),從而促進(jìn)人膀胱癌細(xì)胞生長(zhǎng)抑制和凋亡[18]。
3.5腎癌外源性誘導(dǎo)的AMPK活性可抑制腎癌的細(xì)胞生長(zhǎng),研究表明,AMPK對(duì)腎癌細(xì)胞起重要的調(diào)控作用,AMPK激活劑在人類腎癌治療中的使用,可作為未來(lái)的研究方向,具有很好的前景[19]。
4AMPK信號(hào)途徑與乳腺癌
二甲雙胍可通過(guò)非胰島素介導(dǎo)的方式直接干涉癌細(xì)胞增殖和凋亡,其關(guān)鍵機(jī)制在于二甲雙胍可激活A(yù)MPK。AMPK與磷酸肌醇3-激酶/人第10號(hào)染色體缺失的磷酸酶及張力蛋白同源的基因/蛋白激酶B途徑和絲裂原活化蛋白激酶/細(xì)胞外調(diào)節(jié)蛋白激酶級(jí)聯(lián)在乳腺癌中經(jīng)常失調(diào)。Nin等[20]通過(guò)測(cè)試二甲雙胍單獨(dú)使用、RAD001和(或)化療藥物組合的乳腺癌細(xì)胞株的細(xì)胞增殖、凋亡和自噬,分析細(xì)胞周期蛋白D、細(xì)胞周期蛋白E和p27蛋白印跡表明,二甲雙胍聯(lián)合治療可協(xié)同抑制細(xì)胞周期的G1期,化療藥物和(或)mTOR抑制劑RAD001可協(xié)同抑制細(xì)胞擴(kuò)散。二甲雙胍有可能作為乳腺癌的治療藥物應(yīng)用于臨床。Mazurek等[21]的細(xì)胞實(shí)驗(yàn)顯示,將AMPK轉(zhuǎn)入乳腺癌細(xì)胞MCF7和MDM453后,觀察到兩種細(xì)胞的增殖都受到抑制。
5AMPK信號(hào)途徑與頭頸部鱗狀細(xì)胞癌
mTORC1信號(hào)途徑的研究為頭頸部鱗狀細(xì)胞癌發(fā)病機(jī)制提供了分子生物學(xué)基礎(chǔ),二甲雙胍作為L(zhǎng)KB1/AMPK信號(hào)途徑的激活劑,可抑制mTOR的活性。二甲雙胍可特異性抑制癌前病變的口腔黏膜增殖上皮細(xì)胞層的mTORC1,減少致癌物質(zhì)引起的口腔腫瘤病灶的大小和數(shù)量,阻止頭頸部鱗狀細(xì)胞癌的發(fā)展。研究表明,二甲雙胍對(duì)控制頭頸部鱗狀細(xì)胞癌的發(fā)生和發(fā)展有潛在的臨床益處[22]。
6AMPK信號(hào)途徑與神經(jīng)系統(tǒng)惡性腫瘤
6.1神經(jīng)母細(xì)胞瘤神經(jīng)母細(xì)胞瘤易對(duì)抗血管生成藥物產(chǎn)生耐藥,其機(jī)制是缺氧介導(dǎo)自噬促進(jìn)腫瘤細(xì)胞的生存。研究表明,缺氧誘導(dǎo)的自噬依賴于缺氧誘導(dǎo)因子1α/AMPK信號(hào)途徑,因此應(yīng)用乏氧細(xì)胞自噬抑制劑治療神經(jīng)母細(xì)胞瘤可使腫瘤細(xì)胞發(fā)生體外凋亡,而乏氧細(xì)胞自噬抑制劑亦可能有助于防止對(duì)抗血管生成藥物產(chǎn)生耐藥性[23]。
6.2腦膠質(zhì)瘤腦膠質(zhì)瘤是最常見(jiàn)的原發(fā)性成人腦腫瘤,因腫瘤細(xì)胞易擴(kuò)散到大腦其他區(qū)域而導(dǎo)致預(yù)后不良。研究表明,生長(zhǎng)素增強(qiáng)的腦膠質(zhì)瘤細(xì)胞的遷移主要受內(nèi)源性生長(zhǎng)激素促泌受體、CaMKKβ、AMPK和核因子κB信號(hào)途徑的調(diào)節(jié)[24]。
7AMPK信號(hào)途徑與甲狀腺髓樣癌
甲狀腺髓樣癌與哺乳動(dòng)物mTOR信號(hào)途徑的激活有關(guān)。研究表明,通過(guò)AMPK依賴性抑制mTOR的降糖藥二甲雙胍可降低腫瘤細(xì)胞的增殖[25]。mTOR/核糖體蛋白S6激酶和蛋白激酶R樣內(nèi)質(zhì)網(wǎng)激酶信號(hào)轉(zhuǎn)導(dǎo)途徑的下調(diào)對(duì)甲狀腺髓樣癌細(xì)胞的生長(zhǎng)有抑制作用。在人類甲狀腺髓樣癌細(xì)胞中有二甲雙胍的分子靶標(biāo)表達(dá),具有潛在的治療意義[26]。
8AMPK信號(hào)途徑與惡性間皮瘤
惡性間皮瘤是由接觸石棉引起的,因其潛伏期、生存期短,目前的治療有不良反應(yīng),長(zhǎng)期預(yù)防就顯得尤為重要,重點(diǎn)是提前抑制與石棉接觸后的病理狀態(tài)。越來(lái)越多的證據(jù)表明,脂聯(lián)素在調(diào)節(jié)能量代謝,增加AMPK的活性中發(fā)揮至關(guān)重要的作用[27]。高環(huán)加氧酶2水平的惡性間皮瘤預(yù)后差、存活期短,而AMPK激活可降低環(huán)加氧酶2的表達(dá),脂聯(lián)素是通過(guò)AMPK/環(huán)加氧酶2途徑抑制惡性間皮瘤細(xì)胞的生長(zhǎng)[28]。
9AMPK信號(hào)途徑與肢端黑色素瘤
黑色素瘤是一種能產(chǎn)生黑色素的高度惡性腫瘤。黑色素瘤的預(yù)后較差,晚期可有淋巴道及血液轉(zhuǎn)移。目前可通過(guò)手術(shù)、放化療及免疫等方法進(jìn)行治療,但晚期患者對(duì)治療不敏感,需要的藥物劑量大,因此不良反應(yīng)大。Namiki等[1]研究發(fā)現(xiàn),NUAK2作為AMPK家族中一個(gè)具有癌基因和抑癌基因雙面性基因,對(duì)肢端黑色素瘤的發(fā)生、發(fā)展起重要作用。
10AMPK信號(hào)途徑與肺部腫瘤
肺部腫瘤的特點(diǎn)是病死率高,全球5年生存率僅有15%。基因改變,如抑癌基因的功能喪失往往導(dǎo)致肺癌的發(fā)生、進(jìn)展和轉(zhuǎn)移。LKB1/AMPK/mTOR信號(hào)途徑在調(diào)節(jié)細(xì)胞代謝、生長(zhǎng)、增殖和凋亡中發(fā)揮重要作用。LKB1是一種絲氨酸/蘇氨酸激酶和腫瘤抑制基因,可參與細(xì)胞內(nèi)多種生物活動(dòng),在控制和調(diào)節(jié)細(xì)胞能量代謝、細(xì)胞增殖、細(xì)胞周期、細(xì)胞凋亡和細(xì)胞極性中發(fā)揮重要作用[29]。LKB1的突變失活可導(dǎo)致mTOR信號(hào)途徑異常活化,從而促進(jìn)腫瘤的發(fā)生和發(fā)展。144例肺癌中因LKB1的突變失活所致肺腺癌和鱗狀細(xì)胞癌所占的比例,分別為34%和19%[30]。突變分析表明,LKB1的突變失活在非小細(xì)胞肺癌中高達(dá)30%,其分子機(jī)制目前還不清楚[31]。另有研究表明,LKB1在肺癌起始、分化和轉(zhuǎn)移等多個(gè)過(guò)程中發(fā)揮抑制作用[30],而LKB1的失活突變可啟動(dòng)腫瘤K-ras基因進(jìn)而導(dǎo)致肺腺癌、鱗癌和大細(xì)胞癌。LKB1失活啟動(dòng)的K-ras基因在肺腫瘤的進(jìn)展和轉(zhuǎn)移中的起著重要的作用[32]。因此,對(duì)肺癌患者該信號(hào)途徑進(jìn)行深入的探索是有意義的,可能為肺癌的靶向治療及預(yù)后標(biāo)志物的研究提供新的思路[33]。William等[34]研究磷酸化AMPK在手術(shù)切除的非小細(xì)胞肺癌預(yù)后中的作用,結(jié)果顯示高表達(dá)磷酸化AMPK與非小細(xì)胞肺癌患者生存率的提高相關(guān),研究結(jié)果支持AMPK作為潛在的評(píng)估肺癌預(yù)后和治療目標(biāo)的標(biāo)志物。
11小結(jié)
AMPK可抑制腫瘤細(xì)胞生長(zhǎng)、增殖、自噬、應(yīng)激反應(yīng)和極性調(diào)控[35],LKB1/AMPK/mTOR信號(hào)途徑在調(diào)節(jié)細(xì)胞代謝、生長(zhǎng)、增殖和凋亡中發(fā)揮重要作用,LKB1的突變失活可導(dǎo)致mTOR信號(hào)途徑異常活化,從而促進(jìn)腫瘤的發(fā)生和發(fā)展,活化AMPK可抑制mTOR信號(hào)途徑的異常活化,從而阻止腫瘤發(fā)展。二甲雙胍可能也是通過(guò)mTOR信號(hào)途徑發(fā)揮其抗腫瘤作用的。二甲雙胍作為治療糖尿病的一線藥物,因其具有抗腫瘤細(xì)胞增殖、抗腫瘤血管生成、促進(jìn)腫瘤細(xì)胞凋亡、逆轉(zhuǎn)腫瘤耐藥性等生物學(xué)活性,而備受關(guān)注,已成為研究熱點(diǎn)。這些生物標(biāo)志物可能為腫瘤的分子靶向治療提供新的方向。
參考文獻(xiàn)
[1]Namiki T,Coelho SG,Hearing VJ.NUAK2:an emerging acral melanoma oncogene[J].Oncotarget,2011,2(9):695-704.
[2]Martínez-López N,García-Rodríguez JL,Varela-Rey M,etal.Hepatoma cells from mice deficient in glycine N-methyltransferase have increased RAS signaling and activation of liver kinase B1[J].Gastroenterology,2012,143(3):787-798.
[3]Martínez-López N,Varela-Rey M,Fernández-Ramos D,etal.Activation of LKB1-Akt pathway independent of phosphoinositide 3-kinase plays a critical role in the proliferation of hepatocellular carcinoma from nonalcoholic steatohepatitis[J].Hepatology,2010,52(5):1621-1631.
[4]Huang CH,Tsai SJ,Wang YJ,etal.EGCG inhibits protein synthesis,lipogenesis,and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells[J].Mol Nutr Food Res,2009,53(9):1156-1165.
[5]Kim YH,Liang H,Liu X,etal.AMPKα modulation in cancer progression:multilayer integrative analysis of the whole transcriptome in Asian gastric cancer[J].Cancer Res,2012,72(10):2512-2521.
[6]Martínez-Reyes I,Sánchez-Aragó M,Cuezva JM.AMPK and GCN2-ATF4 signal the repression of mitochondria in colon cancer cells[J].Biochem J,2012,444(2):249-259.
[7]Green AS,Chapuis N,Lacombe C,etal.LKB1/AMPK/mTOR signaling pathway in hematological malignancies:from metabolism to cancer cell biology[J].Cell Cycle,2011,10(13):2115-2120.
[8]Grimaldi C,Chiarini F,Tabellini G,etal.AMP-dependent kinase/mammalian target of rapamycin complex 1 signaling in T-cell acute lymphoblastic leukemia:therapeutic implications[J].Leukemia,2012,26(1):91-100.
[9]Vakana E,Altman JK,Glaser H,etal.Antileukemic effects of AMPK activators on BCR-ABL-expressing cells[J].Blood,2011,118(24):6399-6402.
[10]Shi WY,Xiao D,Wang L,etal.Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy[J].Cell Death Dis,2012,3:e275.
[11]Jang KY,Jeong SJ,Kim SH,etal.Activation of reactive oxygen species/AMP activated protein kinase signaling mediates fisetin-induced apoptosis in multiple myeloma U266 cells[J].Cancer Lett,2012,319(2):197-202.
[12]Suzuki A,Iida S,Kato-Uranishi M,etal.ARK5 is transcriptionally regulated by the Large-MAF family and mediates IGF-1-induced cell invasion in multiple myeloma:ARK5 as a new molecular determinant of malignant multiple myeloma[J].Oncogene,2005,24(46):6936-6944.
[13]Yu SY,Chan DW,Liu VW,etal.Inhibition of cervical cancer cell growth through activation of upstream kinases of AMP-activated protein kinase[J].Tumour Biol,2009,30(2):80-85.
[14]Rattan R,Giri S,Hartmann L,etal.Metformin attenuates ovarian cancer cell growth in an AMP -kinase dispensable manner[J].Cell Mol Med,2011,15(1):166-178.
[15]Lin VC,Tsai YC,Lin JN,etal.Activation of AMPK by pterostilbene suppresses lipogenesis and cell-cycle progression in p53 positive and negative human prostate cancer cells[J].J Agric Food Chem,2012,60(25):6399-6407.
[16]Lee CR,Chun JN,Kim SY,etal.Cyclosporin a suppresses prostate cancer cell growth through CaMKKβ/AMPK-mediated inhibition of mTORC1 signaling[J].Biochem Pharmacol,2012,84(4):425-431.
[17]Frigo DE,Howe MK,Wittmann BM,etal.CaM kinase kinase beta-mediated activation of the growth regulatory kinase AMPK is required for androgen-dependent migration of prostate cancer cells[J].Cancer Res,2011,71(2):528-537.
[18]Zheng QY,Jin FS,Yao C,etal.Ursolic acid-induced AMP-activated protein kinase (AMPK) activation contributes to growth inhibition and apoptosis in human bladder cancer T24 cells[J].Biochem Biophys Res Commun,2012,419(4):741-747.
[19]Woodard J,Joshi S,Viollet B,etal.AMPK as a therapeutic target in renal cell carcinoma[J].Cancer Biol Ther,2010,10(11):1168-1177.
[20]Nin V,Escande C,Chini CC,etal.Role of deleted in breast cancer 1 (DBC1) protein in SIRT1 deacetylase activation induced by protein kinase A and AMP-activated protein kinase[J].J Biol Chem,2012,287(28):23489-23501.
[21]Mazurek S,Michel A,Eigenbrodt E.Effect of extracellular AMP on cell proliferation and metabolism of breast cancer cell lines with high and low glycolytic rates[J].J Biol Chem,1997,272(8):4941-4952.
[22]Vitale-Cross L,Molinolo AA,Martin D,etal.Metformin prevents the development of oral squamous cell carcinomas from carcinogen-induced premalignant lesions[J].Cancer Prev Res (Phila),2012,5(4):562-573.
[23]Hu YL,DeLay M,Jahangiri A,etal.Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma[J].Cancer Res,2012,72(7):1773-1783.
[24]Chen JH,Huang SM,Chen CC,etal.Ghrelin induces cell migration through GHS-R,CaMKII,AMPK,and NF-κB signaling pathway in glioma cells[J].J Cell Biochem,2011,112(10):2931-2941.
[25]Winde WW,Thomson DM.Cellular energy sensing and signaling by Amp-activated protein kinase cell[J].Biochem BIophys,2007,43(3):332-347.
[26]Klubo-Gwiezdzinska J,Jensen K,Costello J,etal.Metformin inhibits growth and decreases resistance to anoikis in medullary thyroid cancer cells[J].Endocr Relat Cancer,2012,19(3):447-456.
[27]Zakikh M,Dowling R,Fantus IG,etal.Metformon is an AMP kinase-dependent growth,inhibitor for breast cancer cells[J].Caner Res,2006,66(6):10269-10273.
[28]Niu K,Asada M,Okazaki T,etal.Adiponectin pathway attenuates malignant mesothelioma cell growth[J].Am J Respir Cell Mol Biol,2012,46(4):515-523.
[29]Hurov JB,Huang M,White LS,etal.Loss of the par-1b/MARK2 polarity kinase leads toincreased metabolic rate,decreased adiposity,and insulin hypersensitivity in vivo[J].Proc Natl Acad Sci,2007,104(13):5680-5685.
[30]Ji H,Ramsey MR,Hayes DN,etal.LKB1 modulates lung cancer diffe-rentiation and metastasis[J].Nature,2007,448(7155):807-810.
[31]Sun LL,Zhong DS,Wu S,etal.Establishment and gene expression profiling of LKB1 stable knockdown lung cancer cell line[J].Chin Med J (Engl),2011,124(13):2028-2032.
[32]Marcus AI,Zhou W.LKB1 regulated pathways in lung cancer invasion and metastasis[J].J Thorac Oncol.2010,5(12):1883-1886.
[33]Gao Y,Ge G,Ji H.LKB1 in lung cancerigenesis:a serine/threonine kinase as tumor suppressor[J].Protein Cell,2011,2(2):99-107.
[34]William WN,Kim JS,Liu DD,etal.The impact of phosphorylated AMP-activated protein kinase expression on lung cancer survival[J].Ann Oncol,2012,23(1):78-85.
[35]Vakana E,Altman JK,Platanias LC.Targeting AMPK in the treatment of malignancies[J].J Cell Biochem,2012,113(2):404-409.
Advance in Research on the Relationship between Adenosine Monophosphate Activated Protein Kinase Signaling Pathway and Tumor
NIUHai-ying1,WANGZhan-li2.
(1.DepartmentofClinicalMedicine,BaotouMedicalUniversity,InnerMongolia,Baotou014010,China; 2.DepartmentofClinicalLaboratory,theFirstAffiliatedHospitalofBaotouMedicalUniversity,InnerMongolia,Baotou014010,China)
Abstract:Adenosine Monophosphate Activated Protein Kinase(AMPK) is a highly conservative protein in mammals’ cells,and it is an important metabolic receptor of cells.The signal pathway of mammals’ mTOR is an atypical silk/threonine kinase,even when it is in the process of anagenesis,it is highly conservative,and it controls the growth of cells through regulating protein synthesis.It is through many kinds of signal pathway that mTOR controls the growth of cells,among which,nutrition signal activation pathway is the channel of amino acid pathway outside the cells.Metformin (the activating agent of LKB1/AMPK) can inhibit the activity of mTOR and thus can be used in the treatment of many kinds of malignancy.The latest study shows that the signal pathways of AMPK and the relevant signal pathways are connected with the occurrence and development of many tumors.
Key words:Adenosine monophosphate activated protein kinase; Liver kinase B1; Signaling pathway of target of rapamycin; Metformin; Tumor
收稿日期:2014-01-14修回日期:2014-07-26編輯:鮑淑芳
doi:10.3969/j.issn.1006-2084.2015.01.021
中圖分類號(hào):R730.2
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1006-2084(2015)01-0052-04