地下透鏡體斷面形狀隨機性對地表動力響應極值的影響①
通信作者: 梁建文(1965-),男,教授、博士生導師,主要從事土動力學和地震工程研究。E-mail:liang@tju.edu.cn。
何穎1,2, 梁建文1,3
(1.天津大學土木工程系,天津 300072; 2.天津城建大學土木工程學院,天津 300384;
3.天津市土木工程結構與新材料重點實驗室,天津 300072)
摘要:采用波函數展開法及邊界離散的方法給出任意斷面形狀的地下透鏡體對平面SH波散射的半解析解,利用蒙特卡羅方法隨機模擬產生30組透鏡體斷面樣本,通過對30組具有同一統計特征的任意斷面地下透鏡體在平面SH波入射下地表動力響應極值的統計分析并與相應橢圓透鏡體解答比較,研究透鏡體斷面形狀隨機性對平面SH波散射的影響。研究表明,透鏡體斷面形狀隨機性對地表動力響應極值具有重要影響。以長短軸比為4的橢圓形透鏡體為例,當斷面矢徑的變異系數為0.1時,樣本地表位移響應極值的最大值遠大于對應橢圓透鏡體解的極值,平均可達47.46%。且增加幅度隨著透鏡體介質與半空間介質波速差距增大而增大。透鏡體埋深越小,增加幅度越大。
關鍵詞:地下透鏡體; 斷面形狀; 平面SH波; 波函數展開法; 半解析解; 蒙特卡羅方法
收稿日期:①2014-08-20
基金項目金基項目:國家自然科學(51378348);天津市應用基礎研究重點項目(12JCZDJC29000)
作者簡介:何穎(1983-),女,講師,主要從事土動力學和地震工程研究。E-mail:he114@126.com。
中圖分類號:P315.3文獻標志碼:A
DOI:10.3969/j.issn.1000-0844.2015.03.0765
Effect of Randomness in the Cross-section Shape of Underground
Lenticles on the Extreme of the Surface Dynamic Response
HE Ying1, 2, LIANG Jian-wen1, 3
(1.DepartmentofCivilEngineering,TianjinUniversity,Tianjin300072,China;
2.SchoolofCivilEngineering,TianjinChengjianUniversity,Tianjin300384,China;
3.TianjinKeyLaboratoryofCivilEngineeringStructuresandNewMaterials,Tianjin300072,China)
Abstract:The semi-analytical solution of SH-waves scattering by an arbitrary cross-section of an underground lenticle in half space is presented using the wave functions expansion method combined with the boundary discrete method. The Monte Carlo method was used to randomly generate 30 samples of the cross-section shape of the lenticle, and the effect of randomness in the cross-section shape on the surface dynamic response was studied by statistical analysis. It was observed that the randomness of the cross-section shape has a significant effect on the surface dynamic response around a lenticle in half space. When the variation coefficient of the inclusion radius is equal to 0.1 for a lenticle of elliptical shape, the maximum of the surface displacement amplitude is larger than that of the peak values observed for the elliptic solution with an average of 47.46%. The difference increases as the inclusion rigidity decreases, whereas the difference decreases as the inclusion depth increases.
Key words: underground lenticle; cross-section shape; plane SH-waves; wave function expansion method; semi-analytical solution; Monte Carlo method
0引言
地表下局部夾雜的透鏡體對地震動的影響多年來一直是地震工程中比較引人關注的課題之一。該問題可以采用解析法[1]和數值法[2-4]求解。目前研究一般針對確定透鏡體形狀,考慮到實際形狀與計算形狀之間存在一定出入,研究透鏡體斷面隨機性對波散射的影響對于工程場地地震安全性評價具有重要參考價值,但目前該問題還鮮有研究。此外,工程中的透鏡體斷面一般寬厚比較大,也就是說斷面接近于長短軸比較大的橢圓,而目前的研究對于此類問題很難準確求解。
本文針對地下長短軸比較大的透鏡體進行研究。首先采用波函數展開法及邊界離散的方法給出任意斷面形狀的地下透鏡體對平面SH波散射的半解析解,然后采用蒙特卡羅方法隨機模擬產生30組透鏡體斷面樣本,通過對樣本在平面SH波入射下地表位移的統計分析,研究透鏡體斷面形狀隨機性對地表動力響應的影響,得出一些對工程具有參考價值的結論。
1方法
圖1為彈性、均勻和各向同性半空間中一埋深為D、區域為Ω的任意形狀透鏡體。半空間介質剪切模量G1,剪切波速v1,透鏡體介質剪切模量G2,剪切波速v2。一頻率為ω的平面簡諧SH波以角度γ入射。以半空間地表為對稱面構造透鏡體的鏡像,則上述半空間問題轉化為全空間波動問題[1]。

圖1 透鏡體及其鏡像 Fig.1 A lenticle in half-space and its image
半空間中的總位移場可寫為:


(3)

對任意形狀邊界,采用Moeen-Vaziri和Trifunac[5]的方法將邊界離散成足夠密的離散點。離散每一點的位移和法向剪應力均應滿足位移及法向應力連續的邊界條件:
式中法向應力可由下式求得,
設A、B、C三點為邊界上相鄰的三點,將A(ra,θa)、C(rc,θc)兩點連線的垂線作為B(rb,θb)點處邊界線的法向量n,則夾角β可表示為:
將式(2)~(6)代入式(7)的位移邊界條件、式(8)計算得到的結果代入式(7)的應力邊界條件,可得到如下線性方程組:
式中:S為2M×4N的系數矩陣,由散射場及透鏡體內位移場決定,M為透鏡體邊界離散的點數,N為級數截斷項數;R為2M×1的自由場列向量;X=[A1,…,AN,B1,…,BN,C1,…,CN,D1,…,DN]T為特定系數列向量,該超定方程組可以采用最小二乘法求解。只要求出待定系數,就可以得到地表位移。
值得指出的是,對于長短軸比較大的橢圓,離散時應遵循等弧長原則,且注意離散點個數M應為級數階段項數N的兩倍,以得到較為精確的解答。
2方法驗證

3數值結果與分析
以橢圓形透鏡體為例,采用蒙特卡羅方法隨機產生30組透鏡體截面樣本,每組樣本由長半軸為1、短半軸為0.25的橢圓乘以一隨機誤差得到。隨機誤差均值為1,標準差為0.1。圖3給出了其中15個截面形狀樣本,每個小圖示意3個樣本。
定義透鏡體長軸均值(2a)與入射波波長之比為入射波的無量綱頻率η=2a/λ=ωa/πv1。分別求解此30組不同截面透鏡體在平面SH波入射下地表位移動力響應,并求得30組地表位移響應幅值極值的均值μ、標準差σ和變異系數σ/μ。圖4(a)、(b)給出了μ和μ±σ為參考所對應的橢圓形透鏡體解答極值。所選計算參數為:埋深D/a=2和5;

圖2 本文解答與解析解答 [6]的比較 Fig.2 Comparison between solutions in this paper and those in Reference[6]

圖3 截面形狀樣本 Fig.3 Cross-section samples for the lenticle

圖4 樣本地表位移極值 Fig.4 The extreme values of surface displacement of 30 samples

表1給出了當v2/v1=1/2時,透鏡體埋深D/a=2和5時樣本地表位移極值的統計數據與橢圓透鏡體解答的極值。可以看出,樣本極值的最大值均顯著大于相應橢圓透鏡體解答極值,前者比后者增大了62.45%;平均而言,當D/a=2和5時,樣本極值的最大值比橢圓透鏡體解答極值分別增大了25.80%和19.08%;樣本極值的均值比橢圓透鏡體解答極值的增大也分別可達22.07%和14.18%。
表1也給出了當v2/v1=1/3時,透鏡體埋深D/a=2和5時樣本地表位移極值的統計數據與橢圓透鏡體解答的極值。可以看出,樣本極值的最大值均顯著大于相應橢圓透鏡體解答極值,前者比后者增大了97.42%;平均而言,當D/a=2和5時,樣本極值的最大值比橢圓透鏡體解答極值分別增大了49.33%和45.60%。當D/a=2和5時,樣本極值的均值比橢圓透鏡體解答極值的增大也分別可達25.75%和23.12%。
為了比較,表1還給出了透鏡體介質剛度趨于0(成為洞室)(v2/v1→0)的結果。可以看出,透鏡體介質剛度趨于0時極值的增大水平顯著大于透鏡體。樣本極值的最大值比橢圓洞室解答極值增大了132.25%;當D/a=2和5時,平均的增大值也達到了78.63%和67.94%。通過比較可以看出,透鏡體埋深越深,透鏡體介質與半空間介質剪切模量越接近,斷面形狀隨機性對地表位移極值的影響越小。因此,工程上需要特別考慮埋深較淺的軟介質透鏡體的斷面形狀隨機性對地表位移極值的影響。
4結論
采用蒙特卡洛方法研究地下透鏡體形狀變異性對地表位移幅值極值大小的影響。通過數值分析得出如下結論:地下透鏡體形狀變異性對地表位移幅值極值大小有重要影響,且隨著透鏡體介質與半空間介質剛度差距增大而增大;樣本地表位移極值的最大值均顯著大于相應橢圓透鏡體解答極值。研究在統計意義上揭示了地下透鏡體形狀變異性對地表位移幅值極值大小影響的基本規律,對地震安全性評價等具有參考價值。

表 1 地表位移極值的統計
續表1

剪切波速比v2/v1D/aηγ樣本極值最大值均值標準差變異系數橢圓透鏡體解答極值樣本極值的最大值大于橢圓透鏡體解答極值的程度/%樣本極值的均值大于橢圓透鏡體解答極值的程度/%v2/v1=13250.5120.5120°2.442.250.090.042.239.340.9130°2.842.490.140.062.4018.323.7360°3.752.540.270.112.4851.082.6490°3.592.640.350.142.5242.414.740°3.393.080.170.062.8518.788.1730°4.633.200.530.163.3040.19-3.1260°4.302.740.390.182.1897.4225.7590°4.623.010.470.162.8463.066.240°5.653.310.710.242.9392.9513.1430°3.172.560.210.092.3634.568.7260°4.433.020.380.142.6765.6113.1090°5.163.760.580.183.2658.2815.280°3.202.410.340.171.9960.5920.8330°3.212.520.190.082.3735.166.2460°2.762.540.160.062.5010.541.4390°3.412.690.200.082.5434.236.000°3.253.090.110.042.9610.064.3730°4.702.890.470.192.5088.4715.6660°3.432.850.230.092.6529.227.4290°3.552.570.310.132.3153.4910.970°4.352.910.360.152.3683.8423.1230°3.392.560.260.112.3444.769.2660°3.222.660.230.092.4929.156.8390°4.603.000.400.152.7567.649.24v2/v1→0250.5120.5120°3.832.580.340.132.3949.127.9630°6.243.490.860.312.80123.0924.7360°3.472.600.270.112.5337.322.8690°5.272.830.580.242.40119.8118.100°3.802.900.290.112.5747.9712.8530°5.103.580.730.243.0965.1316.0160°3.402.710.250.102.5135.517.9990°3.572.730.290.122.4446.1611.780°4.763.280.530.222.3899.6637.7230°5.182.850.590.262.30124.7423.5560°4.143.100.480.192.5462.8021.9490°6.403.130.830.302.76132.2513.330°3.992.570.560.291.93106.7333.2030°3.292.640.270.122.3142.3014.4760°4.872.920.670.292.33109.2325.5990°3.022.440.230.102.3528.463.680°5.062.790.490.182.6789.374.4230°4.332.970.480.172.8352.604.6760°3.272.770.150.062.5229.699.9890°2.992.490.190.082.3825.804.800°4.853.660.700.242.9166.8526.1130°4.583.190.490.202.4685.7629.3560°4.102.880.400.152.6753.187.6690°5.582.730.660.272.48125.2810.13
參考文獻(References
[1]袁曉銘.地表下圓形夾塞區出平面散身射地面運動的影響[J].地球物理學報,1996,39(3):373-381.
YUAN Xiao-ming.Effect of a Circular Underground Inclusion on Surface Motion under Incident Plane SH Waves[J].Acta Geophysica Sinica,1996,39(3):373-381.(in Chinese)
[2]袁曉銘,孫銳.飽和砂土透鏡體液化對建筑物地震反應的影響[J].地震工程與工程振動,2000,20(1):68-74.
YUAN Xiao-ming,SUN Rui.Effect of Liquefaction of Lenticular Saturated Sand Zone on Seismic Response of Buildings[J].Journal of Earthquake Engineering and Engineering Vibration,2000,20(1):68-74.(in Chinese)
[3]梁建文,張炳政,巴振寧.層狀場地中透鏡體對地震動影響的基本規律[J].地震工程與工程振動,2009.29(5):1-12.
LIANG Jian-wen,ZHANG Bing-zheng,BA Zhen-ning.On the Effect of a Lenticle in a Layered Site on Ground Motion[J].Journal of Earthquake Engineering and Engineering Vibration,2009,29(5):1-12.(in Chinese)
[4]梁建文,張炳政,巴振寧.基巖上均勻場地中透鏡體對地震動的非線性放大作用[J].地震工程與工程振動, 2009,29(6):13-24.
LIANG Jian-wen,ZHANG Bing-zheng,BA Zhen-ning.Nonlinear Amplification of Ground Motion by a Lenticle in Single Layer on Bedrock[J].Journal of Earthquake Engineering and Engineering Vibration,2009,29(6):13-24.(in Chinese)
[5]Moeen-Vaziri N,Trifunac M D.Scattering and Diffraction of Plane SH-waves by Two-dimensional Inhomogeneities[J].Soil Dynamics and Earthquake Engineering,1988,7:179-188.
[6]Pao Y H,Mow C C.Diffraction of Elastic Waves and Dynamic Stress Concentrations[M].New York:Crane Russak and Company Inc,1973.