999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

利用導數解決函數零點問題探秘

2016-01-24 18:44:36張汝波
新高考·高二數學 2015年12期

張汝波

導數方法不是解決零點問題的唯一方法,也不一定是最簡單的方法,但在很多時候是一種較為通用的方法,而在近幾年各省的高考題中零點問題出現的頻率非常高,形式也逐漸多樣化,非常有必要來重視它.

一、已知區間上有零點,求參數的取值范圍

例1 已知函數f(x)=ex-ax?-bx1,其中a,b∈R.

(1)設g(x)是函數f(x)的導函數,求函數g(x)在區間[O,1]上的最小值;

(2)若f(1)一0,函數f(x)在區間(O,1)內有零點,求a的取值范圍.

解 (1)略.

(2)由題設f(1)→e-a-b-1=0→b=e-a-l,又f(0)=0,若函數f(x)在區間(0,1)內有零點,則函數f(x)在區間(O,1)內至少有三個單調區間.

(1)當a≤1/2或a≥e/2時,由(1)知,函數g(x)即f'(x)在區間[O,1]上單調,不可能滿足“函數f(x)在區間(0,1)內至少有三個單調區間”這一要求.e),求導可知h(x)在區間(1,√e)上單調遞增,在區間√e,e)上單調遞減.故hmax(x)=h(√e)=√e-e-l<0,即f'min(x)

于是,函數f(x)在區間(0,1)內至少有三個單調區間

綜上,a的取值范圍為(e-2,1).

方法感悟 本題是已知區間上有零點,求字母參數的范圍問題.由于含有超越函數式的函數圖象較為復雜,也沒有固定的形狀特點,所以在研究此類問題時,可以從兩個方面去思考:一是根據區間上零點的個數情況,估計出函數圖象的大致形狀,從而推導出導數需要滿足的條件,進而求出參數滿足的條件;另一方面,也可以先求導,通過求導分析函數的單調情況,再依據函數在區間內的零點情況,推導出函數本身需要滿足的條件,此時,由于函數比較復雜,常常需要構造新函數,通過多次求導,層層推理得解.

二、已知參數的取值范圍,討論

零點個數的情況

例2 (2013年江蘇第20題節選)設函數f(x)=lnx-ax,g(x)=ex-ax,其中a為實數,若g(x)在(-1,+∞)上是單調增函數,試求f(x)的零點個數,并證明你的結論.

解 因為g(x)在(-1,+∞)上是單調增函數,所以g'(x)≥0對x∈(-1,+∞)恒成立,即a≤ex對x∈(-1,+∞)恒成立,所以a≤e-l.

(i)當a=0時,由f(1)=0以及f'(x)=l/x>o,得f(x)存在唯一的零點;

(ii)當a<0時,由于f(ea)=a-aea=a(l-ea)<0,f(1)=-a>0,且函數f(x)在[ea,1]上的圖象不間斷,所以f(x)在(ea,1)上存在零點.

另外,當x>o時,f'(x)=1/x-a>o,故f(x)在(o,+∞)上是單調增函數,所以f (x)只有一個零點.

(iii)當oo,當x>a-l時,f'(x)<0,所以,x=a-l是f(x)的最大值點,且最大值為f(a-1)=-lna-1

①當-Ina-l=O,即a=e-l時,f(x)有一個零點x=e.

②當-Ina-l>O,即O

實際上,對于Oo,且函數f(x)在[e-1,a-l]上的圖象不間斷,所以f(x)在(e-l,a-l)上存在零點,

另外,當x∈(o,a-1)時,f'(x)=1/x-a>O,故f(x)在(0,a-l)上是單調增函數,所以f(x)在(0,a-1)上只有一個零點.

另可證f(x)在(a-l,+∞)上只有一個零點.

綜合(i),(ii),(iii),當a≤O或a=e-1時,f(x)的零點個數為1;當O

方法感悟 對于已知參數的取值范圍,討論零點個數的情況,借助導數解決的辦法也有兩個:一是分離參數,得到參數與超越函數式相等的式子,借助導數分析函數的單調區間和極值,結合圖形,由參數函數與超越函數的交點個數,易得交點個數的分類情況.另一辦法是構造新函數,求導,用單調性判定函數的取值情況,再根據零點存在定理證明零點的存在性,

三、已知存在零點,證明零點的性質

例3 (2014天津第20題節選)已知函數f(x)=x-aex(a∈R),x∈R,函數y=f(x)有兩個零點xl,x2,且x1

(I)求a的取值范圍;

(Ⅱ)證明:隨著(z的減小而增大.

解 (I)a的取值范圍是(0,e-l),解答略.

(Ⅱ)證明:由f(x)=x-ae=o,有a=在(-∞,1)上單調遞增,在(1,+∞)上單調遞減.并且,當x∈(-∞,0]時,g(x)≤o;當x∈(O,+∞)時,g(x)>0.

由已知,x1,x2滿足a=g(x1),a=g(x2),由a∈(0,e-1),及g(x)的單調性,可得x1∈(O,l),x2∈(1,+∞).

對于任意的a1,a2∈(O,e-l),設a1>a2,g(ξ1)=g(ξ2)=a1,其中o<ξ1<1<ξ2;g(η1)=g(η2)=a2,其中0<η1<1<η2.

因為g(x)在(O,1)上單調遞增,故由a1>a2,即g(ξ1》g(η1),可得ξ1﹥η1

類似可得ξ2<η2又由ξ1,η1>o,得所以,隨著a的減小而增大.

方法感悟 已知函數存在零點,需要證明零點滿足某項性質時,實際上是需要對函數零點在數值上進行精確求解或估計,需要對零點進行更高要求的研究,為此,不妨結合已知條件和未知要求,構造新的函數,再次通過導數的相關知識對函數進行更進一步的分析研究,其中,需要靈活運用函數思想、化歸思想等,同時也需要我們有較強的抽象概括能力、綜合分析問題和解決問題的能力.

總而言之,高考題中利用導數解決函數零點的問題最終都回歸于函數單調性的判斷,而函數的單調性、極值義與其導函數的零點有著緊密的聯系,可以說函數零點的判斷,導函數零點的判斷,或者數值上的精確求解或估計成為導數綜合應用中最為核心的問題.

主站蜘蛛池模板: 精品欧美视频| 激情网址在线观看| AV在线麻免费观看网站| 国产精品lululu在线观看| 农村乱人伦一区二区| 久久99国产综合精品女同| 九色国产在线| 国产女人水多毛片18| 欧美三级自拍| 在线欧美一区| 国产偷国产偷在线高清| 无码日韩视频| 91综合色区亚洲熟妇p| 丁香六月综合网| 欧美日韩动态图| 九九九九热精品视频| 精品99在线观看| 婷婷99视频精品全部在线观看 | 日本不卡在线视频| 玩两个丰满老熟女久久网| 国产人成网线在线播放va| 亚洲天堂伊人| 毛片三级在线观看| 国产乱人激情H在线观看| 欧美日本在线播放| 国内精自视频品线一二区| 亚洲精品国产自在现线最新| 国产精品亚洲欧美日韩久久| 国产嫩草在线观看| 国产美女无遮挡免费视频网站 | 毛片久久久| 人妻精品久久久无码区色视| 青青青视频免费一区二区| 精品亚洲欧美中文字幕在线看| 青青青国产视频| 国产精品不卡永久免费| 无码一区二区三区视频在线播放| 日a本亚洲中文在线观看| 永久天堂网Av| 欧美精品影院| 中文字幕第1页在线播| 福利在线一区| 国产三级毛片| 色哟哟国产精品| 538国产视频| 免费不卡在线观看av| 国产裸舞福利在线视频合集| 91免费观看视频| 55夜色66夜色国产精品视频| 国产精品林美惠子在线观看| 亚洲天堂精品视频| 亚洲天堂视频在线免费观看| 91精品国产自产在线观看| 青青久视频| 久久中文字幕不卡一二区| 精品国产成人av免费| 国产成人高清精品免费软件 | 亚洲国产天堂久久综合| 91精选国产大片| 这里只有精品国产| 五月婷婷综合网| 国产激情在线视频| 久久精品电影| 久久毛片免费基地| 精品国产网站| 性网站在线观看| 欧美日韩久久综合| 亚洲国产成人无码AV在线影院L| 亚洲精品中文字幕无乱码| 欧美亚洲另类在线观看| 久久这里只精品热免费99| 色综合天天操| 日韩福利在线观看| 91久久国产综合精品女同我| 国产成人精品视频一区二区电影| 日日拍夜夜嗷嗷叫国产| 秋霞午夜国产精品成人片| 国产SUV精品一区二区6| 国产熟女一级毛片| 四虎精品免费久久| 精品一区二区三区自慰喷水| 色欲色欲久久综合网|