林青松(湖南省新寧縣第三中學)
?
探討“交匯”形式下的高中數學試題分析研究
林青松
(湖南省新寧縣第三中學)
摘要:伴隨著新課標的不斷推進,基于“交匯”主題形態的高中數學試題研究,引起了各界的普遍關注,逐漸導引而成一種潮流,在對“交匯”類型的高中數學試題進行分析和研究的過程中,發揮新課程理念內涵的潛能。
關鍵詞:交匯;高中數學;試題;分析;研究
伴隨著新課程改革的發展與進步,衍生而出了一個全新的名詞——“交匯”,它是在高中數學試題編制過程中的一種類型,它的提出有其存在的必然性和合理性,在追求數學學科的高度和思維價值的探索中,“交匯”體現出了對高中數學知識的全面而突出重點的考查,具有其特殊的優越性。
在新課程改革背景下,試題的“交匯”形式成為研究的潮流和趨勢,通過探究其提出背景,我們不難看到,在高中數學的“交匯”式試題分析研究中,重點是著眼于高中數學試題的交匯類型和交匯特點,教師也普遍認同“交匯”試題的分析和研究可以更為系統地把握數學知識,而且可以實現數學思想方法的滲透,促進數學專業全面發展。然而,我們還應當從交匯的背后探尋“交匯”特殊的編制分析與研究,它是對交匯類型的特殊到一般的歸納與思考,注重其交匯思想的指導性,并有益于高中數學思維的強化與鞏固。
高中數學試題的“交匯”研究,可以從隱性和顯性兩個層面來看,它們各有側重,但是都是基于高中數學知識的“交匯”分析與研究,關于高中數學高考試題“交匯”分類研究,我們可以從以下幾個分類來探尋:
1.高中數學基礎知識的“交匯”。高中數學基礎知識是學習的重點內容,在各模塊基礎知識的學習中,其交匯試題數不勝數,如:函數與導數的交匯試題中,函數貫穿高中數學,而導數是新課程中重要的銜接內容,是研究函數性態的工具,對交匯試題的函數與導數綜合考查中,可以將導數內容與不等式和函數的單調性、方程根的分布、幾何中的切線等知識點進行融合,創新高考試題內容。
例題:已知雙曲線C:y=m/x(m<0)與點醞(1,1),求證:①過點醞可以作兩條直線,這兩條直線與雙曲線C分別相切。②設①中的兩個切點為A、B,其組成的△醞AB是正三角形,求m的值及切點坐標值。
試題交匯性分析:這個例題要求熟悉掌握導數的幾何意義,并利用導數求函數的極值、單調區間等數學方法進行求解,用交匯的理念連接了函數與數列、曲線的橋梁。
2.立體幾何知識的“交匯”研究。高中數學的立體幾何重點研究物體在三維狀態下的特征,包括:形狀、大小、位置等,立體幾何的符號與圖形成為表達其特征的途徑,在高考高中數學試題中也展現出交匯的類型。
例在四棱錐P—ABCD中,底面為矩形,PA垂直于底面,E為PD的中點。求證1:PB平行于AEC;求證2:設二面角D—AE—C為60°,AP=1,AD=1.33,求三棱錐E—ACD的體積。
試題交匯分析:這一例題考查立體幾何的知識與概念,要將立體幾何與平面幾何進行有機的聯系,進行交匯的思考與問題的探析,實現由平面幾何向立體幾何的過渡與交匯。
3.解析幾何知識的交匯分析與研究。解析幾何是高中數學的重要知識點,它以平面幾何為基石,以代數的思維進行幾何問題的解析,這是綜合性較強的高中數學考試題目,體現出代數與幾何知識的交匯。
例題:如果不同的兩個點P、Q,它們的坐標分別是(a,b),(3-b,3-a),那么線段PQ的垂直平分線l的斜率為多少?圓(x-2)2+ (y-3)2=1關于直線L對稱的圓的方程是什么?
交匯解析:解析幾何是高考數學常見的試題,它是融合多個知識點的試題內容,涉及不同的相關知識,體現了數學知識的系統特性。
對高中數學交匯試題的分析離不開對交匯試題的編制研究,高中數學的交匯形式試題編制的原則,主要是依據以下幾個原則:
1.依據性原則。高中數學的考試試題編制要根據其考查的目標不同而加以區分,如:高考試題目標下的試題要具有層次化的差異特點,而期末考試目標下的試題要根據不同學期的數學教學內容加以確定。
2.課程性原則。高中數學是一門思維性和邏輯性較強的學科課程,我們要充分體會高中數學抽象性的特點,用高度概括的語言,對數學知識加以描述和學習,并在廣泛的社會應用中加以充分的利用。在高中數學試題編制中,要充分考慮數學課程的學科特點,展示出數學學科課程中對于事物的抽象性知識和概括性理解,用文字語言、符號語言、圖形語言表達其課程的學科價值與應用。
3.精準性原則。高中數學是一門嚴謹的課程知識,它借用不同的符號語言和圖形語言,表達其數學的內涵與精要,我們必須在數學試題編制的過程中,準確把握數學符號語言和圖形語言,尋找出符號、圖形、字母之間的關聯,從而準確地把握試題的主旨。
4.綜合性原則。高中數學的交匯試題編制要尋找數學知識的交匯點,這就體現出數學試題的綜合程度,隨著其交匯的重復應用,數學知識的綜合性與交叉性則越為明顯,顯現出更高層次的交匯思維。
5.適宜性原則。在高中數學交匯試題編制的過程中,要注重試題的“精要”把握,避免出現交匯過多或選擇“偏題”“怪題”的現象。
總而言之,高中數學的交匯試題要注重自然、系統和綜合的特點,要把握高中數學知識的內在關聯,避免混亂無章的狀態,要在數學知識的交匯過程中,體現出高中數學知識體系的完整性與科學性,通過對交匯試題的知識內化與遷移,可以增強學生靈活運用數學知識的能力,促進學生的數學發散思維和想象,用較高的層次把握高中數學試題的形式與內涵,不僅在交匯試題中展現出較強的解題技巧,而且培養解題的數學思維,真正達到數學知識與思想方法的統一。
參考文獻:
劉璐.函數單調性及其在高中數學中的應用[D].西北大學,2015.
·編輯曾彥慧