陳 原,洪萬樹,陳仕璽,王 瓊,張其永
(廈門大學海洋與地球學院,福建廈門361102)
?
赤點石斑魚促性腺激素及其受體基因的克隆和表達模式分析
陳原,洪萬樹*,陳仕璽,王瓊,張其永
(廈門大學海洋與地球學院,福建廈門361102)
摘要:魚類腦垂體分泌的促性腺激素( GtHs)與分布在性腺中的促性腺激素受體( GtHRs)所形成的信號通路,在性腺發育過程中發揮了重要作用.為了解GtH/GtHR信號通路在雌性先熟雌雄同體魚類性腺發育過程中的作用,本文克隆了赤點石斑魚( Epinephelus akaara) GtHsβ亞基( FSHβ和LHβ)及其受體GtHRs( Fshr和Lhcgr)基因的序列,并分析了它們在性腺發育過程中的表達模式.結果表明: FSHβ和LHβ具有糖蛋白激素家族成員保守的結構特征; Fshr和Lhcgr具有糖蛋白激素受體亞家族保守的結構特征; FSHβ和LHβ基因僅在腦垂體表達,而Fshr和Lhcgr基因僅在性腺表達;在性逆轉早期( ET)階段FSHβ表達量處于低水平,但在性逆轉后期( LT)階段和雄性階段表達量升高; LHβ的表達模式與FSHβ相似,但從ET階段到LT階段,與FSHβ相比其表達量的升高幅度較低;性腺中Fshr和Lhcgr在雌性和ET階段表達量都很低,LT階段明顯上升,雄性階段達到最高水平,但Fshr表達量遠遠高于Lhcgr.研究結果提示,GtH/GtHR通路參與了赤點石斑魚的性腺發育過程,其中FSH信號通路在這過程中可能發揮更主要的作用.
關鍵詞:赤點石斑魚;促性腺激素基因;促性腺激素受體基因;克隆;表達;性腺發育
性逆轉是一種有趣的生物學現象,存在于硬骨魚的一些種類中,包括雌性先熟的雌雄同體魚類和雄性先熟的雌雄同體魚類[1].血清類固醇性激素17β-雌二醇( E2)和雄性激素是調控魚類性逆轉的關鍵因子[2-3].與其他脊椎動物一樣,在魚類中調控類固醇性激素的合成和分泌主要是腦垂體產生的促性腺激素( GtHs),包括促濾泡激素( FSH)和促黃體激素( LH).FSH和LH都是糖蛋白激素家族成員,該家族由相同的α亞基和各激素特異的β亞基構成[4].目前,已在14個目的56種魚類中克隆得到了GtHs基因的序列.魚類FSH主要在性腺發育的早期階段發揮作用,促進性腺分泌E2和睪酮( T)等類固醇性激素,調節性腺發育和配子形成;而LH促進性腺分泌17α,20β-雙羥孕酮( DHP),對配子的最后成熟和產卵行為起作用[5-6].
FSH和LH在性腺中與各自相應的促性腺激素受體( GtHRs)結合調控類固醇性激素生成和配子形成.促濾泡激素受體( Fshr)和促黃體激素受體( Lhcgr)屬于糖蛋白激素受體亞家族,在脊椎動物中具有保守的結構特征,包括1個大的胞外區、7個跨膜區和1個羧基端胞內區[7].在大西洋鮭魚( Salmo salar)[8]、尖齒胡鯰( Clariasga riepinus)[9]、斑馬魚( Danio rerio)[10]、日本鰻鱺( Anguilla japonica)[11]、黑鯛( Acanthopagrus schlegeli)[12]、沖繩磨塘鱧( Trimma okinawae)[13]、牙漢魚( Odontesthes bonariensis)[14]以及斜帶石斑魚( Epinephelus coioides)[15]等不同種類的魚類中都已克隆到2種GtHRs基因序列.在魚類中,Fshr主要在雌魚的鞘膜細胞和顆粒細胞以及雄魚的Sertoli細胞中表達;而Lhcgr主要在雌魚的顆粒細胞和雄魚的萊氏細胞中表達[16-17].但也有研究發現,日本鰻鱺和尖齒胡鯰的萊氏細胞中也有Fshr表達[18-19].上述表達模式表明2種糖蛋白激素在調控性腺發育中起重要作用.沖繩磨塘鱧性腺中同時存在精巢和卵巢,在相對個體大小引起的性逆轉過程中,首先發生GtHRs基因表達的變化[13].雌性先熟的蜂巢石斑魚( Epinephelus merra)在自然條件下由雌性向雄性逆轉過程中,Fshr表達量升高[20].在甲基睪酮( MT)誘導的斜帶石斑魚性逆轉過程中,LHβ和Lhcgr表達量升高[15].這些結果都表明GtH/ GtHR通路參與了性逆轉過程.但在不同石斑魚種類之間、自然性逆轉和人工誘導性逆轉過程中,促性腺激素及其受體基因表達模式并不一致,因此開展赤點石斑魚( Epinephelus akaara)促性腺激素及其受體基因表達模式的研究,能更深入地了解GtH/GtHR通路在魚類性逆轉過程中的作用.
赤點石斑魚屬于雌性先熟的雌雄同體魚類,其性腺發育過程可分為雌性階段、性逆轉階段和雄性階段.本研究分別克隆了赤點石斑魚GtHsβ亞基及其受體GtHRs基因的cDNA序列,研究了自然性腺發育過程中GtHsβ在腦垂體中和GtHRs在性腺中的表達模式,討論了GtH/GtHR通路在赤點石斑魚性腺發育過程中的作用.研究結果可為赤點石斑魚人工繁育提供參考資料.
1. 1實驗魚及其取樣
2012年5月—2013年6月,分批次從福建省漳州市漳浦縣養殖場購買自然海區種苗養殖的赤點石斑魚共36尾.實驗魚1~4齡,用0.01%(質量分數)的間氨基苯甲酸乙酯甲磺酸鹽( MS222,Sigma)麻醉,進行生物學測量(體長9.5~30.5 mm,體質量24.1~791.6 g).解剖取性腺稱重,計算性腺成熟指數( GSI,GSI = m性腺/m體×100%).取垂體和一部分性腺組織于液氮速凍后-80℃保存,用于基因表達分析研究;另一部分性腺組織于波恩氏固定液,用于性腺發育組織學觀察.
1. 2 GtHsβ亞基和GtHRs基因的克隆
取性成熟的赤點石斑魚腦垂體用于克隆GtHsβ亞基基因的cDNA序列,性腺用于克隆GtHRs基因的cDNA序列.采用RNAzol試劑盒( MRC)提取RNA,cDNA第一鏈利用反轉錄試劑盒( Thermo)合成.根據已經發表的魚類GtHsβ亞基及GtHRs基因序列分別設計簡并引物(表1),以cDNA為模板,用Taq酶( TaKaRa)于25 μL反應體系進行PCR擴增.產物經1%(質量分數)瓊脂糖凝膠電泳后,用凝膠純化試劑盒( Qiagen)純化,再與pMD-19T載體( TaKaRa)連接,轉化大腸桿菌( Escherichia coli) DH5α菌體( Promega).陽性克隆委托廣州Invitrogen公司測序.
根據已知的中間片段分別設計cDNA 5'末端快速擴增( 5'-RACE)和3'-RACE特異性的外側引物和內側引物(表1).參照TaKaRa試劑盒說明書進行兩輪PCR擴增.純化、連接、轉化及測序步驟同上.

表1赤點石斑魚促性腺激素β亞基及其受體基因克隆引物Tab.1 Primers used for cloning GtHsβ andGtHRs genes in E.akaara
中間片段及RACE產物拼接后,靠近5'末端及3'末端設計全序列引物擴增得到GtHsβ亞基及GtHRs基因的cDNA全序列.
1. 3 GtHsβ亞基和GtHRs基因序列分析
使用NCBI網站( http:∥www.ncbi.nlm.nih.gov) BLAST軟件進行同源性搜索,使用ExPASy網站( http: ∥www.expasy.ch/tools/dna.html)相關軟件進行開放閱讀框的搜索和氨基酸序列的推斷.氨基酸的序列比對和同源性分析分別使用Megalign軟件和ClustalW軟件( DNASTAR).
1. 4 GtHsβ亞基和GtHRs基因mRNA的組織分布及性腺發育過程中的表達檢測
分別從4尾赤點石斑魚取頭腎、肝、腎、腦、腦垂體、胃、腸、心臟、脾和性腺組織;另取其他不同發育階段的性腺組織.RNAzol試劑盒提取總RNA,取1.5 μg進行反轉錄制備cDNA模板.設計熒光定量PCR引物(表2 ),在7500快速熒光定量系統( Applied Biosystems)進行PCR,以2-ΔΔCT法[21]分析結果.

表2赤點石斑魚促性腺激素β亞基及其受體基因表達分析引物Tab.2 Primers used for expression analyses of GtHsβ and GtHRs genes in E.akaara
1. 5組織學分析
性腺固定于波恩氏液,冰浴過夜,梯度脫水后包埋于石蠟( Leica)中.切片厚度5 μm,蘇木精-伊紅染色后觀察性腺發育過程.
1. 6數據分析
數據以平均值±標準差的形式表示,采用GraphPad Prism 4軟件繪制圖表.采用one-way ANOVA方法進行差異顯著性分析,顯著性水平為p<0.05.
2. 1 GtHsβ亞基和GtHRs基因克隆和序列分析
通過RACE方法獲得的FSHβ、LHβ和Fshr基因全長序列以及Lhcgr基因的部分序列( GenBank登陸號分別為KJ534537、KJ534538、KJ534535和KJ534536).
FSHβ的cDNA全長共561 bp,包括開放閱讀框363 bp(包括終止密碼),5'非編碼區110 bp,3'非編碼區88 bp,包含poly( A)尾;編碼120個氨基酸,包含21個氨基酸的信號肽及12個保守的半胱氨酸殘基(圖1 ( a) ).LHβ的cDNA全長共582 bp,開放閱讀框447 bp(包括終止密碼),5'非編碼區32 bp,3'非編碼區103 bp,包含poly( A)尾;編碼148個氨基酸,包含33個氨基酸的信號肽及12個保守的半胱氨酸殘基(圖1 ( b) ).赤點石斑魚的FSHβ和LHβ都屬于糖蛋白激素,具有保守的半胱氨酸殘基.
Fshr的cDNA全長共3 540 bp,開放閱讀框2 106 bp(包括終止密碼),5'非編碼區198 bp,3'非編碼區1 236 bp,包含poly( A)尾;編碼701個氨基酸,包含20個氨基酸的信號肽,有一個由376個氨基酸構成的大的氨基端胞外區、7個跨膜區和一個由62個氨基酸構成的羧基端胞內區(圖1( c) ).Lhcgr的cDNA部分序列1 774 bp,3'非編碼區220 bp,包含poly( A)尾;編碼517個氨基酸.
同源性分析表明魚類FSHβ和LHβ氨基酸序列屬于兩個不同的分支,赤點石斑魚與蜂巢石斑魚( E.merra)和黑邊石斑魚( E.fasciatus)的FSHβ和LHβ氨基酸序列有較高同源性(圖2).魚類相應受體氨基酸序列也屬于兩個不同的分支,赤點石斑魚與斜帶石斑魚( E.coioides)的Fshr和Lhcgr氨基酸序列有較高同源性(圖3).
2. 2 GtHsβ亞基和GtHRs基因mRNA的組織分布
通過熒光定量PCR方法,對赤點石斑魚GtHsβ亞基和GtHRs基因mRNA在不同組織的表達進行了分析.結果(圖4)顯示:在所檢測的組織中,FSHβ與LHβ僅在腦垂體中表達,其他所檢測組織,即頭腎、肝、腎、腦、胃、腸、心臟、脾和性腺中均無表達; Fshr和Lhcgr僅在性腺中表達.
2. 3 GtHsβ亞基和GtHRs基因mRNA在性腺發育過程中的表達模式
對每尾赤點石斑魚的性腺逐一進行組織學觀察,根據切面中卵巢和精巢部分所占比例以及兩部分中生殖細胞及體細胞的發育狀態,將性腺發育分為7個階段( FⅠ、FⅡ、FⅢ、FⅣ、ET、LT和M),其中FⅠ、FⅡ、FⅢ和FⅣ階段為雌性階段,ET和LT階段為性逆轉階段,M階段為雄性階段(表3).
通過熒光定量PCR方法,研究了赤點石斑魚GtHsβ亞基和GtHRs基因mRNA在性腺發育過程中的表達模式.結果發現垂體中FSHβ在FⅠ階段表達量較高,隨后顯著下降; FⅡ至FⅣ階段,隨著性腺中卵巢部分的發育,表達量逐漸上升; ET階段的表達量顯著下降,LT階段表達量迅速上升(圖5( a) ).垂體中LHβ的高表達量出現在FⅣ階段(雌性成熟階段)、LT階段和M階段(圖5( b) ).性腺中的Fshr在FⅠ階段表達量高,在FⅡ階段至ET階段表達量都很低,LT階段表達量顯著上升,M階段表達量進一步升高并達到最高水平(圖5( c) ).性腺中Lhcgr的表達模式與Fshr相似,但表達量遠遠低于Fshr(圖5( d) ).

圖1推導的赤點石斑魚促性腺激素及其受體氨基酸序列Fig.1 Deduced amino acid sequences of GtHsβ and GtHRs in E.akaara
在赤點石斑魚的ET階段,FSHβ基因的表達量處于低水平,但在LT階段和M階段表達量升高,這種表達模式與用MT誘導的斜帶石斑魚( E.coioides)性逆轉,以及用芳香化酶抑制劑誘導的褐石斑魚( E.bruneus)性逆轉過程中FSHβ的表達模式相似.投喂MT的斜帶石斑魚,在ET階段FSHβ表達量被顯著抑制,而在M階段表達量升高到MT處理前水平[15,22].芳香化酶抑制劑誘導的褐石斑魚性逆轉過程中,在ET階段,卵巢組織退化伴隨著血清11-酮基睪酮水平升高,但FSHβ表達量低; LT階段精子發生過程中FSHβ表達量才顯著升高[23].然而在蜂巢石斑魚( E.merra)的研究中發現,ET階段FSHβ表達量顯著升高;此外,用分離純化的牛FSH處理雌性蜂巢石斑魚3周后發生性逆轉,并伴隨著內源性雄性激素水平和FSHβ表達量的上升[24].這些結果都表明FSH可能參與調控石斑魚的性逆轉,但FSHβ具體的表達模式在不同種類中有差異.此外,本研究觀察到赤點石斑魚性腺中Fshr基因表達量在自然性逆轉過程中顯著升高,這種表達模式與蜂巢石斑魚自然性逆轉性腺Fshr表達模式相似[20].然而在MT誘導的斜帶石斑魚性逆轉過程中,Fshr的表達受抑制[15].從已有的研究結果看,FSH信號通路在不同石斑魚種類自然性逆轉和人工誘導的性逆轉之間存在不同的調控機制.
在大多數的雌雄異體魚類中,LHβ和Lhcgr基因的mRNA在性腺發育后期大量表達,提示其對配子的成熟以及產卵行為有重要作用[16].然而,目前對LH在雌雄同體魚類性逆轉過程中的作用還知之甚少.對雌性先熟的雌雄同體魚,如雜斑盔魚( Coris julis)[25]和藍頭瀨魚( Thalassoma bifasciatum)[26]的研究表明,人工注射人絨毛膜促性腺激素( HCG)可以誘導雌性到雄性的性逆轉.LH或LH類似物可以誘導雌性先熟的雌雄同體魚類,如黃鱔( Monopterus albus)提前發生性逆轉[27].本文中自然性逆轉的赤點石斑魚在LT階段和M階段LHβ和Lhcgr表達量上升,與斜帶石斑魚MT誘導性逆轉中的LHβ和Lhcgr表達模式一致,提示在赤點石斑魚中,LH信號通路可能參與了性逆轉的啟動和隨后的精子發生過程.然而,在芳香化酶抑制劑誘導的褐石斑魚性逆轉過程中,LHβ表達量一直處于低水平[23].蜂巢石斑魚自然性逆轉過程中LHβ表達量也沒有顯著變化;此外分離純化的牛LH也不能有效誘導雌性蜂巢石斑魚發生性逆轉[24].在上述兩項研究中,僅僅關注了LHβ表達量,而Lhcgr在性逆轉過程中的表達模式未見研究報道.
本研究發現,在赤點石斑魚性腺發育和性逆轉過程中FSHβ與LHβ表達量差別不大,但從ET階段到LT階段,FSHβ表達量增加了7倍左右,而LHβ表達量僅增加3倍左右.此外,雖然性腺中Fshr與Lhcgr的表達模式相似,但Fshr的表達量遠遠高于Lhcgr的表達量.綜合分析GtHs及其受體基因的表達量及表達模式,可以推測在赤點石斑魚性腺發育過程中,相對于LH信號通路,FSH及其受體在性逆轉過程中可能發揮更重要的作用.

圖2赤點石斑魚和其他魚類物種間促性腺激素β亞基氨基酸序列同源性分析Fig.2 Phylogenetic analysis of GtHsβ between E.akaara and other species

圖3赤點石斑魚和其他魚類物種間促性腺激素受體氨基酸序列同源性分析Fig.3 Phylogenetic analysis of GtHRs between E.akaara and other species
參考文獻:
[1]DE MITCHESON Y S,LIU M.Functional hermaphroditism in teleosts[J].Fish Fish,2008,9( 1) : 1-43.
[2]NAKAMURA M,BHANDARI R K,HIGA M.The role of estrogens plays in sex differentiation and sex changes of fish [J].Fish Physiol Biochem,2003,28( 1/2/3/4) : 113-117.
[3]WU G C,DU J L,LEE Y H,et al.Current status of genetic and endocrine factors in the sex change of protandrous black porgy,Acanthopagrus schlegeli ( Teleostean)[J].Ann N Y Acad Sci,2005,1040( 1) : 206-214.
[4]PIERCE J G,PARSONS T F.Glycoprotein hormones—structure and function[J].Annu Rev Biochem,1981,50( 4) : 465-495.
[5]PLANAS J V,SWANSON P.Maturation-associated changes in the response of the salmon testis to the steroidogenic actions of gonadotropins ( GTHⅠand GTHⅡ) in vitro[J].Biol Reprod,1995,52( 3) : 697-704.
[6]TYLER C R,POTTINGER T G,COWARD K,et al.Salmonid follicle-stimulating hormone ( GtHⅠ) mediates vitellogenic development of oocytes in the rainbow trout,Oncorhynchus mykiss[J].Biol Reprod,1997,57( 5) : 1238-1244.
[7]VASSART G,PARDO L,COSTAGLIOLA S.A molecular dissection of the glycoprotein hormone receptors[J].Trends Biochem Sci,2004,29( 3) : 119-126.
[8]MAUGARS G,SCHMITZ M.Molecular cloning and charac-terization of FSH and LH receptors in Atlantic salmon ( Salmosalar L.)[J].Gen Comp Endocr,2006,149 ( 1) : 108-117.

圖4赤點石斑魚促性腺激素β亞基及其受體基因在不同組織的表達Fig.4 Expression of GtHsβ and their receptor genes in different tissues in E.akaara

表3赤點石斑魚性腺發育各階段的組織學特征Tab.3 Histological characteristics of gonads at different stages of gonadal development in E.akaara
[9]VISCHER H F,BOGERD J.Cloning and functional characterization of a gonadal luteinizing hormone receptor complementary DNA from the African catfish ( Clarias gariepinus)[J].Biol Reprod,2003,68 ( 1) : 262-271.
[10]KWOK H F,SO W K,WANG Y J,et al.Zebrafish gonadotropins and their receptors: 1.cloning and characterization of zebrafish follicle-stimulating hormone and luteinizing hormone receptors-evidence for their distinct functions in follicle development[J].Biol Reprod,2005,72 ( 6) : 1370-1381.

圖5赤點石斑魚促性腺激素β亞基及其受體基因在性腺發育各階段的表達模式Fig.5 The expression patterns of GtHsβ and their receptor genes at different stages of gonadal development in E.akaara
[11]JENG S R,YUEH W S,CHEN G R,et al.Differential expression and regulation of gonadotropins and their receptors in the Japanese eel,Anguilla japonica[J].Gen Comp Endocr,2007,154( 1/2/3) : 161-173.
[12]AN K W,LEE K Y,YUN S G,et al.Molecular characterization of gonadotropin subunits and gonadotropin receptors in black porgy,Acanthopagrus schlegeli: effects of estradiol-17 beta on mRNA expression profiles[J].Comp Biochem Phys B,2009,152( 2) : 177-188.
[13]KOBAYASHI Y,NAKAMURA M,SUNOBE T,et al.Sex change in the gobiid fish is mediated through rapid switching of gonadotropin receptors from ovarian to testicular portion or vice versa[J].Endocrinology,2009,150( 3) : 1503-1511.
[14]SHINODA T,MIRANDA L A,OKUMA K,et al.Molecular cloning and expression analysis of fshr and Lhr in relation to fshb and lhb subunits during the period of temperaturedependent sex determination in pejerrey Odontesthes bonariensis[J].Mol Reprod Dev,2010,77( 6) : 521-532.
[15]HU X S,LIU X C,ZHANG H F,et al.Expression profiles of gonadotropins and their receptors during 17 alpha-methyltestosterone implantation-induced sex change in the orangespotted grouper ( Epinephelus coioides)[J].Mol Reprod Dev,2011,78( 6) : 376-390.
[16]LEVAVI-SIVAN B,BOGERD J,MANANOS E L,et al.Perspectives on fish gonadotropins and their receptors[J].Gen Comp Endocr,2010,165( 3) : 412-437.
[17]MIWA S,YAN L,SWANSON P.Localization of two gonadotropin receptors in the salmon gonad by in vitro ligand autoradiography[J].Biol Reprod,1994,50( 3) : 629-642.
[18]OHTA T,MIYAKE H,MIURA C,et al.Follicle-stimulating hormone induces spermatogenesis mediated by androgen production in Japanese eel,Anguilla japonica[J].Biol Reprod,2007,77( 6) : 970-977.
[19]GARCIA-LOPEZ A,BOGERD J,GRANNEMAN J C M,et al.Leydig cells express follicle-stimulating hormone receptors in African catfish[J].Endocrinology,2009,150 ( 1) : 357-365.
[20]ALAM M A,KOBAYASHI Y,HIRAI T,et al.Isolation,characterization and expression analyses of FSH receptor in protogynous grouper[J].Comp Biochem Phys A,2010,156 ( 3) : 364-371.
[21]SCHMITTGEN T D,LIVAK K J.Analyzing real-time PCR data by the comparative C-T method[J].Nat Protoc,2008,3( 6) : 1101-1108.
[22]ZHANG W M,ZHANG Y,ZHANG L H,et al.The mRNAexpression of P450 aromatase,gonadotropin beta-subunits and FTZ-F1 in the orange-spotted grouper ( Epinephelus coioides) during 17 alpha-methyltestosterone-induced precocious sex change[J].Mol Reprod Dev,2007,74 ( 6) : 665-673.
[23]HUR S P,LIM B S,HWANG I J,et al.Masculinization in juvenile longtooth grouper,Epinephelus bruneus,with aromatase inhibitor: changes in GtH subunit mRNA expression and steroids hormone levels[J].Anim Cells Syst,2012,16 ( 2) : 127-134.
[24]KOBAYASHI Y,ALAM M A,HORIGUCHI R,et al.Sexually dimorphic expression of gonadotropin subunits in the pituitary of protogynous honeycomb grouper ( Epinephelus merra) : evidence that follicle-stimulating hormone ( FSH) induces gonadal sex change[J].Biol Reprod,2010,82( 6) : 1030-1036.
[25]REINBOTH R,BRUSLESICARD S.Histological and ultrastructural studies on the effects of hCG on sex inversion in the protogynous teleost Coris julis[J].J Fish Biol,1997,51 ( 4) : 738-749.
[26]KOULISH S,KRAMER C R.Human chorionic gonadotropin ( hCG) induces gonad reversal in a protogynous fish,the bluehead wrasse,Thalassoma bifasciatum ( Teleostei,Labridae)[J].J Exp Zool,1989,252( 2) : 156-168.
[27]YEUNG W S,CHEN H,CHAN S T.Effects of LH and LHRH-analog on gonadal development and in vitro steroidogenesis in the protogynous Monopterus albus[J].Gen Comp Endocrinol,1993,89( 3) : 323-332.
Cloning,Characterization and Expression of Gonadotropins and Their Receptors Genes in Epinephelus akaara
CHEN Yuan,HONG Wanshu*,CHEN Shixi,WANG Qiong,ZHANG Qiyong
( College of Ocean&Earth Sciences,Xiamen University,Xiamen 361102,China)
Abstract:In teleost,signaling pathways between gonadotropins ( GtHs) in pituitary and gonadotropin receptors ( GtHRs) in gonad play important roles in gonadal development.To gain insights into the involvement of GtH/GtHR systems in the gonadal development and sex change process,cDNAs encoding GtHs and their receptors were firstly cloned from Epinephelus akaara,a protogynous hermaphrodite fish,and the expression profiles of GtHβ subunits ( FSHβ and LHβ) and their receptors ( Fshr and Lhcgr) were analyzed.Sequence analyses showed that FSHβ and LHβ were characterized by the glycoprotein hormones family,and Fshr and Lhcgr were characterized by the glycoprotein hormone receptors subfamily in E.akaara.FSHβ and LHβ were only expressed in pituitary,while Fshr and Lhcgr were only expressed in gonad.During the sex change,the expression of FSHβ was low at early transition ( ET) stage and increased at late transition ( LT) and male ( M) stages.The expression pattern of LHβ was similar to that of FSHβ,while from ET to LT stages,compared with FSHβ,LHβ expression levels showed a slower increase.The expression levels of both Fshr and Lhcgr were low from FⅠto ET stages,increased significantly at LT stage,and reached the highest level at M stage.The expression level of Fshr was much higher than that of Lhcgr.Taken together,our results suggest that GtH/ GtHR systems are involved in the process of gonadal development and sex change in E.akaara,among which the signaling pathway of FSH possibly plays more important roles than that of LH.
Key words:Epinephelus akaara; GtHs; GtHRs; cloning; expression; gonadal development
*通信作者:wshong@ xmu.edu.cn
基金項目:國家自然科學基金( 41276129) ;高等學校博士學科點專項科研基金( 20120121110029)
收稿日期:2015-01-16錄用日期: 2015-06-12
doi:10.6043/j.issn.0438-0479.2016.01.008
中圖分類號:Q 785; S 917.4
文獻標志碼:A
文章編號:0438-0479( 2016) 01-0037-09
引文格式:陳原,洪萬樹,陳仕璽,等.赤點石斑魚促性腺激素及其受體基因的克隆和表達模式分析[J].廈門大學學報(自然科學版),2016,55( 1) : 37-45.
Citation: CHEN Y,HONG W S,CHEN S X,et al.Cloning,characterization and expression of gonadotropins and their receptors genes in Epinephelus akaara[J].Journal of Xiamen University( Natural Science),2016,55( 1) : 37-45.( in Chinese)