蔣國靜++++++沈明潔++++++曾薇薇++++++齊聰
[摘要] 妊娠是一種同種異體移植,成功妊娠的關鍵是母胎界面的免疫-內分泌交互調控能夠順利同步進行。而孕酮、雌二醇、人絨毛膜促性腺激素等早孕期重要激素可調控母胎界面的免疫反應。本文在既往研究認識的基礎上,圍繞母胎界面重要的免疫功能細胞,闡明在早孕期激素對于母胎免疫耐受的形成、滋養細胞的入侵及胎盤形成的影響。為反復自然流產、先兆子癇、胎兒宮內生長受限等疾患的防治提供激素治療的新思路。
[關鍵詞] 母胎界面;免疫調節;激素;早期妊娠
[中圖分類號] R714 [文獻標識碼] A [文章編號] 1673-7210(2017)07(c)-0034-05
[Abstract] Pregnancy is an example of the natural allogeneic transplantation. The success of pregnancy depends mostly on a successful immune-endocrine cross-modulation at the maternal–fetal interface. Hormones have important effect on early pregnancy including progesterone, estradiol and human chorionic gonadotrop in play essential roles in the immune crosstalk at the maternal-fetal interface. This review focuses on the immunomodulatory effect of these hormones during early pregnancy on the establishment of maternal-fetus immune tolerance, invasion of trophoblastic cells and formation of placenta. The present review will provide important insights into novel therapeutic strategies of the recurrent spontaneous miscarriage, pre-eclampsia and intrauterine growth restriction.
[Key words] Maternal-fetal interface; Immuno-endocrine cross-modulation; Hormone; Early pregnancy
妊娠是自然界中半同種異體移植的成功范例。成功的妊娠要求母體進行一系列復雜的生物學調控,它不僅要求母體免疫系統能接受并耐受半同種異體移植的胚胎,同時保證胎兒正常發育所依賴的胎盤及蛻膜發育正常,其核心結構就是母胎界面。早期妊娠階段,包括胚泡著床、母體子宮內膜蛻膜化、胎盤血管重塑,均受到激素內分泌,包括甾體類激素(孕激素、雌激素、腎上腺皮質激素)及肽類激素(人絨毛膜促性腺激素,泌乳素,催產素)的緊密調控與支持[1]。女性的早期妊娠可以看作是免疫-免疫與免疫-內分泌相互作用,構建形成的免疫調節網絡維持穩態的結果。母胎界面平衡且精密的免疫-內分泌調控是妊娠成功的關鍵因素。母胎界面免疫耐受失調可導致自然流產、先兆子癇、胎兒宮內生長受限等疾病的發生[2]。
20世紀90年代,Wegmann等[3]首先提出妊娠時母胎界面以輔助T細胞2(Th2)細胞為主導,此后不斷的研究證實母胎界面輔助T細胞1(Th1)/Th2/調節T細胞(Treg)分泌的細胞因子的精確平衡是維持生理妊娠所必需的[4]。而妊娠期一些重要的激素對于蛻膜中具有分泌上述細胞因子功能的免疫細胞有非常明確的調節作用。激素對于母胎界面免疫調節的可能有以下兩種機制:①直接途徑:激素直接結合受體,調控免疫細胞;②間接途徑:提高細胞因子、生長因子水平,間接影響免疫細胞及其分泌的相關細胞因子。本文將重點介紹孕酮、雌二醇、人絨毛膜促性腺激素(HCG)在母胎界面固有及獲得性免疫應答中的作用。
1 激素對母胎界面固有免疫應答的調控
1.1 激素對母胎界面自然殺傷細胞的調節作用
早期妊娠母胎界面富集了大量的免疫細胞,而子宮自然殺傷細胞(uNK),也稱為蛻膜NK細胞(dNK),占母胎界面免疫細胞總數的70%。uNK不同于外周血自然殺傷細胞(pNK),雖然兩者都具有細胞毒性和細胞因子分泌作用。80%的uNK其表型為CD56br ightCD16dim,主要分泌細胞因子和趨化因子,調節母胎界面的免疫耐受,而90%的pNK其表型為CD56dimCD16bright,主要發揮細胞毒性作用[5]。目前大部分臨床及動物實驗研究均認為uNK在滋養層細胞入侵和胎盤形成過程中的血管生長和螺旋動脈的重塑均起到關鍵作用[6-9]。
早期妊娠期雌孕激素對于母胎界面uNK的富集與功能調節密切相關。Kuang等[10]研究發現,卵巢切除小鼠注射雌激素及孕激素均可誘導NK細胞大量向早期假孕子宮內膜募集。注射17β-雌二醇2 h后,小鼠內膜即可發現NK細胞募集,NK細胞逐漸在子宮內膜層小血管周圍募集,并隨著激素水平下降而逐漸消退,同時在內膜基質層大量募集;而注射孕酮后12 h后,NK細胞在子宮內膜小血管內皮細胞處大量募集。雌孕激素聯合注射可完全模擬早期自然妊娠NK細胞在母胎界面的募集。由此認為,早孕階段,母胎界面的NK細胞募集并非由存活的胚胎驅導,而是雌孕激素聯合驅動。更為重要的是,有研究表明,雌二醇和孕酮雖然增加uNK的數量,但是其細胞毒性卻明顯受到抑制[11]。雌孕激素水平在早期妊娠階段的大幅度攀升有助于uNK在母胎界面的富集,且同時抑制uNK的細胞毒性,有助于滋養細胞入侵和胎盤形成[12]。此外,Sotnikova等[13]認為,由于uNK本身并不表達甾體類激素受體,孕酮可能是通過糖皮質激素受體直接作用于uNK。
1.2 激素對母胎界面巨噬細胞的調節作用
巨噬細胞占母胎界面免疫細胞總數量的20%~30%,僅次于uNK的數量。巨噬細胞在整個妊娠期間的子宮和胎盤組織都持續存在,并且大量浸潤于胚胎種植區域。活化的巨噬細胞能產生大量的一氧化氮(nitric oxide,NO),引起細胞損傷和組織功能異常,巨噬細胞也能分泌細胞因子,保持Th2型細胞因子優勢特征,以維持妊娠[14]。近年來巨噬細胞在母胎界面免疫耐受形成中的樞紐地位和意義越來越得到重視[15-16]。
巨噬細胞在母胎界面的遷移、吞噬活性和Th2/Th1細胞因子分泌的調節都可能受到妊娠期激素的調控。Hunt等[17]發現,孕酮可降低小鼠巨噬細胞向母胎界面遷移,孕酮同時抑制了巨噬細胞分泌Th1特征的細胞因子,如IL-1及NO。肖云山等[18]報道,早孕期女性蛻膜中巨噬細胞分泌IL-10的數量要明顯高于外周血的單核細胞。付志紅等[19]發現復發性流產女性巨噬細胞吞噬活性較正常妊娠女性明顯增高,其分泌的Th2/Th1細胞因子比值下降,均提示早期妊娠相關激素調控巨噬細胞的數量、吞噬活性,并通過分泌細胞因子改變母胎界面的免疫格局。此外,Guimera等[20]發現,雌二醇、HCG可促進人類子宮巨噬細胞分泌血管內皮生長因子(VEGF),這可能與巨噬細胞參與早期妊娠滋養層細胞入侵和胎盤形成過程中血管生長和螺旋動脈的重塑機制密切相關[21]。據報道,目前在復發性自然流產患者中常用低分子肝素治療,其作用機制與低分子肝素能抑制巨噬細胞合成NO相關[22-23]。
1.3 激素對母胎界面樹突狀細胞的調節作用
樹突狀細胞(DC)是體內最強的抗原提呈細胞,根據其來源分為髓系DC和淋巴系DC。DC雖然僅占母胎界面細胞總數的1%[24],但在妊娠早期母胎界面的免疫耐受中扮演關鍵角色[25]。存在于母胎界面的DC絕大多數為誘導免疫耐受的未成熟型[26]。多項研究表明,母胎界面的DC能誘導T細胞無能,介導T細胞的克隆清除,刺激分化T調節細胞并增加IL-10的分泌,從而保持母胎界面Th1/Th2動態免疫平衡,抑制母體對胎兒的同種移植排斥反應,從而有助于成功妊娠[27-29]。
同時,研究表明,樹突狀細胞可受到激素的調控[30-31]。此外,不同來源的樹突細胞對激素刺激會產生不同的反應,例如,妊娠早期重要的性激素雌二醇、孕酮及HCG均可使骨髓來源的DC呈免疫耐受表型,降低其分泌促炎性細胞因子的能力,并誘導T細胞無能[32];而對于單核細胞來源的樹突狀細胞這些激素刺激則不能改變其表型及對T細胞的作用[33]。多項研究表明,孕酮可影響樹突狀細胞的分化成熟及功能的改變。Ivanova等[34]發現生理濃度的孕酮即可使單核細胞分化成為成熟的DC。Liang等[35]及Kyurkchiev等[36]均發現體外培養時孕酮可使髓系來源的DC顯著增加IL-10的分泌。Liu等[37]發現雌激素可以使成熟DC產生IL-12、TNF-γ、IFNG等促炎因子減少,母胎界面高雌激素水平有助于減少DC分泌促炎癥因子而保護胚胎的發育。Schumacher等[38]發現HCG及黃體生成素(LH)均可介導母胎界面的DC分泌Tregs從而抑制免疫反應,保護半同種移植的胚胎。
1.4 激素對母胎界面肥大細胞的調節作用
子宮肥大細胞(uMC)的數量在妊娠期明顯增加,還伴隨著細胞形態的擴張[39]。Woidacki等[40]研究發現,缺乏uMC的動物模型出現胚胎著床失敗,其研究同時發現uMC與子宮螺旋動脈的重塑也密切相關。雌二醇及孕酮均被報道具有增加uMC在子宮組織中的密度并激活uMC的作用[41]。
2 激素對母胎界面獲得性免疫應答的調控
早期妊娠階段,激素在調節母胎界面固有免疫應答的同時,也通過對B淋巴細胞和T淋巴細胞調控獲得性免疫應答,維持正常妊娠。B細胞的兩個亞型B1和B2細胞有著不同的表型和功能。研究報道HCG可減少B淋巴細胞的數量并增強調節性B細胞的功能,從而有助于妊娠的成功[42]。Khil等[43]報道HCG在抑制Th1類細胞因子IFN-γ和TNF-α產生的同時可增加Th2類細胞因子IL-10的分泌。而孕酮可誘導淋巴細胞產生孕酮誘導的封閉因子(Progesterone-induced blocking factor,PIBF)和不對稱抗體,從而提高母胎界面Th2類細胞因子的分泌水平,降低uNK細胞的活性,有助于母胎界面的免疫耐受的形成[44]。此外,Chien等[45]報道孕酮在早期妊娠階段即可通過非經典途徑抑制T細胞的激活。
3 小結
免疫異常被認為是不明原因性不孕、反復胚胎移植失敗和反復自然流產的主要因素。對于妊娠早期內分泌調控的認識不應僅僅局限在保持子宮肌層靜止、內膜蛻膜化等宏觀層面。針對母胎界面免疫-內分泌交互對話調控的研究對闡明妊娠失敗的機制、優化治療策略無疑具有極大的臨床及理論價值。
目前對于免疫因素導致的上述疾病的治療尚無公認有效的治療策略。而孕酮、雌二醇、HCG在輔助生殖技術中的廣泛應用,體現了激素治療對母胎界面的免疫-內分泌調控的臨床價值。Aaleyasin等[46]發現,胚胎移植前子宮內注射HCG可顯著提高患者的胚胎著床率。Lukassen等[47]也報道體外受精-胚胎移植的患者采用激素治療可抑制母胎界面uNK、巨噬細胞及B淋巴細胞的數量。雖然HCG治療反復自然流產的療效仍存在爭議[48-50],但仍應看到激素治療對于妊娠早期免疫-內分泌調控的臨床價值及目前研究的局限性。母胎界面的免疫調節作為當下生殖醫學的熱點領域,未來需要更多的研究來闡明免疫-內分泌交互對話在妊娠早期的意義,為相關疾病提供有效治療策略依據。
[參考文獻]
[1] Schumacher A,Costa DC,Zenclussen AC. Endocrine factors modulating immune responses in pregnancy [J]. Front Immunol,2014,5(5):1-12.
[2] Mjosberg J,Berg G,Jenmalm MC,et al. FOXP3+ regulatory T cells and T helper 1,T helper 2,and T helper 17 in human early pregnancy decidua [J]. Biol Reprod,2010,82(12):698-705.
[3] Wegmann TG,Lin H,Guilbert L,et al. Bidirectional cytokine interactions in the maternal-fetal relationship:is successful pregnancy a TH2 phenomenon? [J]. Immunol Today,1993,14(7):353-356.
[4] Raghupathy R,Makhseed,M,Azizieh F,et al. Cytokine production by maternal lymphocytes during normal huma npregnancy and in unexplained recurrent spontaneous abortion [J]. Hum Reprod,2000,15(3):713-718.
[5] Moffett-King A. Natural killer cells and pregnancy [J]. Nat Rev Immunol,2002,2(9):656-663.
[6] Wallace AE,Fraserr,Cartwright JE. Extravilloustrophoblast and decidual natural killer cells:a remodelling partnership [J]. Hum Reprod Update,2012,18(4):458-471.
[7] Rtsep MT,Felker AM,Kay VR,et al. Uterine naturalkiller cells:supervisors of vasculature construction in early decidua basalis [J]. Reproduction,2015,149(2):R91-R102.
[8] Quenby S,Nikh,Innesb,et al. Uterine natural killercells and angiogenesis in recurrent reproductive failure [J]. Hum Reprod,2009,24(1):45-54.
[9] Lash GE,Schiessl B,Kirkley M,et al. Expression of angio-genic growth factors by uterine natural killer cells during early pregnancy [J]. J Leukoc Biol,2006,80(3):572-580.
[10] Kuang H,Peng H,Xu H,et al. Hormonal regulation ofuterine natural killer cells in mouse preimplantation uterus [J]. J Mol Histol,2010,41(1):1-7.
[11] Hao S,Zhao J,Zhou J,et al. Modulation of 17 b-estradiol on the number and cytotoxicity of NK cells in vivo related to MCM and activating receptors [J]. Int Immunopharmacol,2007,7(13):1765-1775.
[12] Guo W,Li P,Zhao G,et al. Glucocorticoid receptor mediates the effect of progesterone on uterine natural killer cells [J]. Am J Reprod Immunol,2012,67(6):463-473.
[13] Sotnikova N,Voronin D,Antsiferova Y,et al. Interactionof decidual CD56+ NK with trophoblast cells duringnormal pregnancy and recurrent spontaneous abortion atearly term of gestation [J]. Scand J Immunol,2014,80(3):198-208.
[14] Moffett-King A. Natural killercells and pregnancy [J]. Nat Rev Immunol,2002,2(9):656-663.
[15] Takeshi N. Review:the immuno-modulatory roles ofmacrophages at the maternal-fetal interface [J]. Reprod Sci,2010,17(3):209-18.
[16] 賈永芳,李莉,宋興麗,等.妊娠早期小鼠子宮巨噬細胞分布和活性的變化[J].解剖學雜志,2009,37(1):49-51.
[17] Hunt JS,Miller L,Platt JS. Hormonal regulation ofuterine macrophages [J]. Dev Immunol,1998,6(1-2):105-110.
[18] 肖云山,林其德.妊娠早期蛻膜組織巨噬細胞分泌IL-10/IFN-γ功能的特征[J].現代婦產科進展,2005,14(3):218-221.
[19] 付志紅,朱文杰,陳秀敏,等.不明原因復發性流產患者蛻膜巨噬細胞活性變化及其細胞因子分泌[J].生殖與避孕,2010,30(11):745-748.
[20] Guimera M,Morales-Ruiz M,Jiménez W,et al. LH/HCG stimulation ofVEGF and adrenomedullin production by follicular fluid macrophages andluteinized granulosa cells [J]. Reprod Biomed Online,2009,18(6):743-749.
[21] Cervar M,Desoye G,Blaschitz A,et al. Paracrine regulation of distinct trophoblast functions in vitro by placental macrophages [J]. Cell Tissue Res,1999,295(2):297-305.
[22] Ahmed T,Smith G,Vlahov I,et al. Inhibition of allergic airway responses by heparin derived oligosaccharides:Identification of a tetrasaccharide sequence [J]. Respir Res,2012,13(6):1-13.
[23] Shastri MD,Johns C,Hutchinson JP. Ion exchange chromatographic separation and isolation of oligosaccharides of intact low-molecular-weight heparin for the determination of their anticoagulant and anti-inflammatory properties [J]. Anal Bioanal Chem,2013,405(18):6043-6052.
[24] Gardner L,Moffett A. Dendritic cells in the human decidua [J]. Biol Reprod,2003,69(4):1438-1446.
[25] Chorny A,Gonzalez-Rey E,Delgado M. Regulation of dendritic cell differentiation by vasoactive intestinal peptide:therapeutic applicationson autoimmunity and transplantation [J]. Ann NY Acad Sci,2006,1088(11):187-194.
[26] Blois S,AlbaSoto CD,Tometten M,et al. Lineage,maturity,and phenotype of uterine murine dendritic cells throughout gestationindicate a protective role in maintaining pregnancy [J]. Biol Reprod,2004,70(4):1018-1023.
[27] Steinman RM. The control of immunity and tolerance by dendriticcells [J]. Pathol Biol,2003,51(2):59-60.
[28] Liu S,Yu Y,Zhang M,et al. The involvement of TNF-alpha related apoptosis-inducing ligand in the enhanced cytotoxicity of IFN-beta stimulated human dendritic cells totumorcells [J]. J Immunol,2001,166(9):5407-5415.
[29] Misra N,Bavry J,Lacroix-Desmazes S,et al. Cutting edge human CD4(+)CD25(+) T cells restrain the maturation and antigen-presenting function of dendritic cells [J]. J Immunol,2004,172(8):4676-4680.
[30] Butts CL,Shukair SA,Duncan KM,et al. Progesterone inhibits mature rat dendritic cells in a receptor-mediated fashion [J]. Int Immunol,2007,19(3):287-296.
[31] Kovats S. Estrogen receptors regulate an inflammatory pathway of dendritic cell differentiation:mechanisms and implications for immunity [J]. Horm Behav,2012,62(3):254-262.
[32] Xu Y,He H, Li C,et al. Immunosuppressiveeffect of progesterone on dendritic cells in mice [J]. J Reprod Immunol,2011,91(1-2):17-23.
[33] Huck B,Steck T,Habersack M,et al. Pregnancy associatedhormones modulate the cytokine production but not the phenotype of PBMC derived human dendritic cells [J]. Eur J Obstet Gynecol Reprod Biol,2005,122(1):85-94.
[34] Ivanova E,Kyurkchiev D,Altankova I,et al. CD83+ monocyte-deriveddendritic cells are present in human decidua and progesterone induces their differentiation in vitro [J]. Am J Reprod Immunol,2005,53(4):199-205.
[35] Liang J,Sun L,Wang Q,et al. Progesterone regulates mouse dendritic cells differentiation and maturation [J]. Int Immunopharmacol,2006,6(5):830-838.
[36] Kyurkchiev D,Ivanova-Todorova E,Hayrabedyan S,et al. Female sex steroid hormones modify some regulatory properties of monocyte-derived dendritic cells [J]. Am J Reprod Immunol,2007,58(5):425-433.
[37] Liu HY,Buenafe AC. Estrogen inhibition of EAE involves effects on dendritic cell function [J]. J Neurosci Res,2002, 70(2):238-248.
[38] Schumacher A,Brachwitz N,Sohr S,et al. Human chorionic gonadotropin attracts regulatory T cells into the fetal-maternal interface during early human pregnancy [J]. J Immunol,2009,182(9):5488-5497.
[39] Mori A,Zhai YL,Toki T,et al. Distribution and heterogeneity of mast cells in the human uterus [J]. Hum Reprod,1997,12(2):368-372.
[40] Woidacki K,Popovic M,Metz M,et al. Mast cells rescue implantation defects caused by c-kit deficiency [J]. Cell Death Dis,2013,4(1):e462.
[41] Jing H,Wang Z,Chen Y.Effect of estradiol on mast cell number and histamine level in the mammary glands of rat [J]. Anat Histol Embryol,2012,41(3):170-176.
[42] Rolle L,Memarzadeh Tehran M,Morell G,et al. Cutting edge:IL-10-producing regulatory B cells in early human pregnancy [J]. Am J Reprod Immunol,2013,70(6):448-453.
[43] Khil LY,Jun HS,Kwon H,et al. Human chorionic gonadotropin is an immune modulator and can prevent autoimmune diabetes in NOD mice [J]. Diabetologia,2007, 50(10):2147-2155.