趙建美
直覺思維通常是指“未經逐步地邏輯分析而迅速地對問題的答案作出合理的猜測、設想或突然領悟的思維過程”。直覺思維注重對問題的全面把握,能直擊事物的本質,而不拘泥于邏輯分析,不糾纏于細節;直覺思維是分析和解決問題的一種特殊而重要的能力,是開發學生智力培養學生創新能力的重要引導因素。具體到數學領域,數學直覺思維是一種十分重要的思維形式,對于創造數學知識以及解決問題能起到邏輯思維無法替代的作用。事實上,在數學發展史上的一些重大發現,如笛卡爾創立解析幾何,牛頓發明微積分,高斯對代數學基本定理的證明等等,無一不是直覺思維的杰作。因此,具備良好的直覺思維能力不僅能夠讓學生的思維更活躍,也能夠幫助他們將平時掌握的知識融合歸納,從而對問題進行推理解答。新數學課程標準要求對學生注重邏輯思維能力培養的同時,還應該注重觀察力、直覺力、想象力的培養。本文將從以下四個層面探討如何在初中數學教學過程中培養學生的直覺思維能力。
一、夯實學生數學基礎知識
培養學生直覺思維,首先要有扎實的知識儲備。知識是一切思維的基礎,是直覺思維的基本要素,沒有知識儲備的思維是不可想象的。數學直覺是一種敏銳的想象和迅速的判斷,必須依靠豐富的知識經驗與有關知識本質的認識。只有具備扎實的數學基礎知識,經過艱苦細致深入的思考,才可能產生這突如其來的靈感火花;沒有苦思冥想就不會有靈機一動,直覺的靈感是勤勞和自信的產物。
二、培養學生敏銳的觀察力
觀察具有目的性、計劃性、持久性,是一種知覺的特殊形式。敏銳的觀察力是培養數學直覺思維的前提,提升學生直覺思維能力必須重視對實物觀察能力的培養;教師要善于引導學生認真觀察相關信息,如數學問題題設和題干的結構特征、數式特征、數形結合特征、關系特征、圖形的變化規律、題目所給出的數據關系等,以及問題所聯系的背景及隱含條件等隱性信息,讓學生將問題放到自身已有的知識體系當中,運用跳躍性思維打破某些環節的限制,努力突破思維定式,超越慣常的思路,及時準確地做出判斷并解決問題。教學過程中要避免枯燥地講解,要更多地讓學生參與到課堂中來,只有他們充分運用自己的思維,才能讓數學靈感不斷被激發,才能有效地提升學生的直覺思維能力。
三、課堂鼓勵學生大膽猜想
高斯說:“沒有大膽而放肆的猜想,就談不上科學的發現”。猜想是一種難度較大的跳躍式的創造性思維,我們要善于激發學生的求知欲,鼓勵他們打破思維定勢,打破形式邏輯的束縛,大膽猜測合情推理,對其結果嚴格邏輯論證。
1.展現問題,激發猜想興趣
思維永遠是從問題開始的,在教學中教師要善于通過實驗、列舉事例或引用已有知識把有待解決的問題展現在學生面前,以激發學生的興趣和追求真理的愿望。比如,教師可向學生介紹著名的哥德巴赫猜想、黎曼猜想和四色猜想等以激勵他們的斗志;也可以允許學生猜想各種問題,對他們進行熱情鼓勵和贊揚,使學生感到猜想的價值,從而獲得滿意、肯定的情緒體驗和繼續進行猜想的積極心理定向。
2.適當示范,指導猜想辦法
教師要給予適當的指導,使學生明白什么值得猜想,什么不值得猜想,以及應該如何猜想;教師應該培養學生不怕譏笑、不怕出錯和勇于自我修正的精神,經常運用直覺思維對問題進行猜想,為學生做出示范,引發學生模仿;在課堂實踐中,鼓勵學生大膽設問、各抒己見,讓學生猜想問題的結論,猜想解題的方向,猜想由特殊到一般的可能,猜想知識間的有機聯系。這樣,讓學生把各種各樣的想法都講出來,讓學生真正觸摸到自己的研究對象,推動其思維的主動性。一個善于運用直覺思維的教師所培養出來的學生,一般來說比較聰明;否則,訓練出來的學生難免思想僵化、思路狹窄,其創造思維活動的速度和效率必然極低,難以適應現代社會的發展。
3.啟發誘導,拓寬猜想渠道
經常用啟發式教育學生,有助于拓寬學生的直覺思維天地。教師可通過“打比方”“舉例子”等方式把抽象的概念具體化,深奧的道理形象化,枯燥的知識趣味化。
4.具體引導,運用多種猜想方式
教師要具體引導學生通過觀察、試驗、類比、探索等方式進行猜測,在教學中可以將課本上封閉型的例題、習題改造成開放型的問題,為學生提供猜想的機會;或者編制一些變換結論,缺少條件的藏頭露尾的題目,引發學生猜想的愿望和猜想的積極性。在這樣過程中滲透數學思想方法及思維方法,幫助建立直覺觀念,因為數學思想方法和思維方法是思維的具體路徑,路徑是否通暢,取決于對數學思想方法掌握的程度。我認為,教師對學生的設想要給予充分肯定和鼓勵,保護學生直覺思維的積極性,創造有利于直覺思維發展的良好氛圍;同時,教師也要教給學生正確的方法來抓住問題的本質弄清其內在的聯系,采用聯想、歸納、類比、變換條件等方面進行合理的猜測、推導,大膽假設,小心求證。
四、數學解題中的直覺思維
數學直覺思維是基于對該領域的基礎知識及其結構的了解,并以此為臺階超越基礎知識和放過細節知識的方式進行直覺思維。高度的直覺來源于豐富的知識和經驗,但它并不是個別天才所特有的,而是一種基本的思維方式;同時,學生的數學思維判斷能力的高低主要取決于直覺思維能力的高低,正如徐利治教授所說:數學直覺是可以后天培養的。實際上每個人的數學直覺也在不斷提高,數學直覺可以通過訓練來增強。
直覺思維和邏輯思維作為人類不同的思維方式,構成了數學進展的兩翼,兩種思維同等重要,偏離任何一方都會制約一個人思維能力的發展,在中學數學教學中,發展學生的直覺思維應與邏輯思維密切結合相輔相成;只有將直覺思維的培養真正融合到教師的教學實際和學生的生活經驗中,充分調動學生的主體情感,樹立多角度思考問題的習慣和意識,發揮他們內在的創新精神和創新能力,才能不斷促進思維能力的整體發展。
總之,初中數學教學中重視學生直覺思維能力的培養,對提高學生思維品質與整體思維能力的發展極其重要;提升初中生直覺思維能力是一個漫長的過程,需要在潛移默化中逐步成長;要注意鼓勵和保護好學生的積極性、主動性、創造性,從而助力學生乘著直覺思維的翅膀在數學王國自由翱翔。