999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

雙饋感應(yīng)發(fā)電機(jī)機(jī)側(cè)變換器直接功率控制策略比較研究*

2017-11-07 01:58:21趙梅花孫南海李廣倫
電機(jī)與控制應(yīng)用 2017年10期
關(guān)鍵詞:策略模型

趙梅花, 鄭 鵬, 孫南海, 李廣倫

(洛陽(yáng)理工學(xué)院 電氣工程與自動(dòng)化學(xué)院,河南 洛陽(yáng) 471023)

雙饋感應(yīng)發(fā)電機(jī)機(jī)側(cè)變換器直接功率控制策略比較研究*

趙梅花, 鄭 鵬, 孫南海, 李廣倫

(洛陽(yáng)理工學(xué)院 電氣工程與自動(dòng)化學(xué)院,河南 洛陽(yáng) 471023)

對(duì)雙饋感應(yīng)發(fā)電機(jī)(DFIG)的兩種直接功率控制(DPC)策略進(jìn)行比較研究。根據(jù)DFIG的數(shù)學(xué)模型,導(dǎo)出對(duì)DFIG進(jìn)行DPC的統(tǒng)一控制模型;首先設(shè)計(jì)基于滯環(huán)比較器的直接功率控制(HC-DPC)策略,采用開(kāi)關(guān)型滯環(huán)控制器,直接實(shí)現(xiàn)定子有功功率和無(wú)功功率的解耦控制;其次將SVM技術(shù)應(yīng)用于DPC,提出SVM-DPC策略,根據(jù)DFIG定子有功、無(wú)功功率偏差,采用PI調(diào)節(jié)器,直接實(shí)現(xiàn)定子有功、無(wú)功功率的解耦控制;最后對(duì)兩種DPC策略進(jìn)行試驗(yàn)研究,驗(yàn)證了兩種DPC策略的正確性和可行性,并對(duì)其控制性能進(jìn)行了對(duì)比評(píng)估。

雙饋感應(yīng)發(fā)電機(jī);直接功率控制;滯環(huán)控制器;空間矢量調(diào)制

0 引 言

雙饋感應(yīng)發(fā)電機(jī)(Doubly-Fed Induction Generator,DFIG)的轉(zhuǎn)子采用雙PWM勵(lì)磁變換器為交流勵(lì)磁電源,以實(shí)現(xiàn)變速恒頻運(yùn)行。轉(zhuǎn)子側(cè)PWM變換器與DFIG的運(yùn)行控制策略主要有矢量控制(Vector Control,VC)[1-2]和直接功率控制(Direct Power Control,DPC)[3-5]。在電網(wǎng)電壓正常時(shí),VC具有良好的動(dòng)、靜態(tài)控制性能,但因控制過(guò)程采用PI調(diào)節(jié)器,當(dāng)電網(wǎng)發(fā)生故障時(shí),其動(dòng)態(tài)響應(yīng)能力便不能滿足控制要求。

DPC把DFIG定子輸出有功功率Ps和無(wú)功功率Qs作為被控量,具有動(dòng)態(tài)響應(yīng)快、魯棒性好等優(yōu)點(diǎn)。將DPC應(yīng)用于DFIG的運(yùn)行控制,以提高系統(tǒng)的動(dòng)態(tài)響應(yīng)能力。文獻(xiàn)[6]提出了基于滯環(huán)控制器的DPC策略(DPC Based on Hysteresis Comparator,HC-DPC),模型結(jié)構(gòu)簡(jiǎn)單,具有優(yōu)良的動(dòng)態(tài)響應(yīng)能力。該文獻(xiàn)對(duì)HC-DPC進(jìn)行了仿真研究。在轉(zhuǎn)子旋轉(zhuǎn)坐標(biāo)系αrβr下推導(dǎo)DFIG HC-DPC的控制模型,使DPC的內(nèi)在機(jī)理較為明晰。推導(dǎo)模型時(shí)需引入多個(gè)中間角度變量,多次采用坐標(biāo)旋轉(zhuǎn)變換,過(guò)程較為復(fù)雜;HC-DPC策略控制性能的不足之處是開(kāi)關(guān)頻率不恒定,使定子輸出電流對(duì)電網(wǎng)產(chǎn)生寬頻范圍的諧波污染。文獻(xiàn)[7]將空間矢量調(diào)制(Space Vector Modulation,SVM)技術(shù)與DPC策略結(jié)合,提出SVM-DPC策略,實(shí)現(xiàn)開(kāi)關(guān)頻率恒定的DPC。文中對(duì)SVM-DPC進(jìn)行仿真研究,其控制效果只能減小而不能完全消除功率偏差。

本文在DFIG同步旋轉(zhuǎn)dq坐標(biāo)系數(shù)學(xué)模型基礎(chǔ)上,導(dǎo)出采用定子電壓定向條件下,對(duì)DFIG實(shí)施DPC的控制模型,分別提出改進(jìn)的HC-DPC與SVM-DPC兩種實(shí)現(xiàn)策略;統(tǒng)一了HC-DPC與SVM-DPC的控制模型,揭示了兩者之間的區(qū)別與聯(lián)系,簡(jiǎn)化了DPC模型推導(dǎo)過(guò)程;搭建了雙饋風(fēng)力發(fā)電系統(tǒng)試驗(yàn)平臺(tái),對(duì)HC-DPC與SVM-DPC策略進(jìn)行了對(duì)比試驗(yàn)研究,得出對(duì)DFIG DPC控制有指導(dǎo)意義的結(jié)論。

1 DFIG DPC控制模型

定子采用發(fā)電機(jī)慣例,轉(zhuǎn)子采用電動(dòng)機(jī)慣例,在同步旋轉(zhuǎn)dq坐標(biāo)系中,DFIG電壓和磁鏈?zhǔn)噶糠匠谭謩e為

式(1)、式(2)的d、q分量形式為

式中: 下標(biāo)s——DFIG定子相應(yīng)物理量;

下標(biāo)r——DFIG轉(zhuǎn)子相應(yīng)物理量。

由式(2)可得:

將坐標(biāo)系d軸定向于定子電壓矢量us得

式中:Us——定子電壓矢量的幅值。

穩(wěn)態(tài)時(shí),忽略DFIG定子電阻Rs,將式(7)代入式(3)得

DFIG定子向電網(wǎng)輸出的復(fù)功率為

將式(7)、式(8)代入式(9)并寫(xiě)成實(shí)部和虛部形式:

式(10)說(shuō)明,當(dāng)電機(jī)參數(shù)和電網(wǎng)電壓恒定時(shí),控制轉(zhuǎn)子磁鏈的d、q軸分量ψrd、ψrq,就能直接控制DFIG定子輸出的Ps和Qs。這就是直接功率控制的基本思想。

將式(10)等號(hào)兩邊取微分得

式(11)說(shuō)明,DFIG定子有功功率Ps、無(wú)功功率Qs的變化率取決于轉(zhuǎn)子磁鏈?zhǔn)噶康膁q分量ψrd與ψrq的變化率。

式(11)即為對(duì)DFIG實(shí)施DPC的控制模型。本文依據(jù)式(11),分別提出了改進(jìn)的HC-DPC策略和SVM-DPC策略。

2 HC-DPC

2.1HC-DPC控制機(jī)理

忽略轉(zhuǎn)子電阻,轉(zhuǎn)子磁鏈空間矢量ψr和電壓矢量ur的關(guān)系近似為

式(12)表明:轉(zhuǎn)子磁鏈ψr的變化取決于施加的轉(zhuǎn)子電壓矢量ur,通過(guò)ur的選用及作用時(shí)間的調(diào)節(jié)控制轉(zhuǎn)子磁鏈ψr的變化規(guī)律,從而將對(duì)轉(zhuǎn)子磁鏈ψr的控制轉(zhuǎn)化為對(duì)轉(zhuǎn)子電壓ur的控制。

轉(zhuǎn)子電壓矢量ur對(duì)轉(zhuǎn)子磁鏈ψr的作用及扇區(qū)N分配如圖1所示。

圖1 電壓矢量對(duì)轉(zhuǎn)子磁鏈的作用及扇區(qū)N分配

根據(jù)圖1所示的定子電壓矢量us所在的扇區(qū),可確定各轉(zhuǎn)子電壓矢量對(duì)磁鏈分矢量ψrd、ψrq的影響,繼而確定出作用的轉(zhuǎn)子電壓矢量對(duì)有功功率Ps和無(wú)功功率Qs的控制效果。

按此規(guī)則,可規(guī)劃出電壓空間矢量ur選用的開(kāi)關(guān)表,決定出減少有功和無(wú)功功率控制誤差的最佳電壓空間矢量。這就是HC-DPC的實(shí)現(xiàn)機(jī)理。

2.2HC-DPC策略

依據(jù)式(11),6個(gè)有效轉(zhuǎn)子電壓矢量在圖1所示的第1扇區(qū)作用效果為

6個(gè)有效轉(zhuǎn)子電壓矢量在其他扇區(qū)的作用效果可依次推出。

采用式(13)所示的滯環(huán)控制規(guī)律,產(chǎn)生與Ps與Qs狀態(tài)相對(duì)應(yīng)的標(biāo)志信號(hào)SP與SQ。

式中:HP、HQ——有功和無(wú)功功率的滯環(huán)寬帶;

SP=1——有功功率Ps需要增加;

SP=0——Ps不變;

SP=-1——Ps需要減少;

SQ=1——無(wú)功功率Qs需要增加;

SQ=0——Qs不變;

SQ=-1表示Qs需要減少;

依據(jù)以上分析得到如表1所示的HC-DPC優(yōu)化開(kāi)關(guān)表。DFIG HC-DPC策略框圖如圖2所示。

表1 HC-DPC開(kāi)關(guān)表

圖2 DFIG HC-DPC結(jié)構(gòu)框圖

3 SVM-DPC

將式(8)、式(9)分別恒等變形可得

忽略轉(zhuǎn)子電阻,將式(13)、式(14)帶入式(4)得

由式(16)可知,DFIG的Ps由urd控制,Qs由urq控制。式(16)是SVM-DPC閉環(huán)控制器設(shè)計(jì)的主要依據(jù)。

為實(shí)現(xiàn)對(duì)DFIG輸出功率的無(wú)靜差控制,采用PI調(diào)節(jié)器,用PI調(diào)節(jié)器輸出控制式(16)中的定子功率微分項(xiàng),則轉(zhuǎn)子電壓控制方程為

二是嚴(yán)格質(zhì)量標(biāo)準(zhǔn)并打造知名品牌。提高產(chǎn)品科技含量,發(fā)展農(nóng)業(yè)科技,加強(qiáng)對(duì)農(nóng)業(yè)生產(chǎn)者利用互聯(lián)網(wǎng)技術(shù)的培訓(xùn)力度,提高生產(chǎn)效率,增加農(nóng)產(chǎn)品附加值,優(yōu)化產(chǎn)業(yè)架構(gòu);三是通過(guò)多種途徑提高農(nóng)業(yè)生產(chǎn)者的品牌意識(shí),使規(guī)范生產(chǎn)變?yōu)槌R?guī)操作,在根源上保障產(chǎn)品質(zhì)量,并且要加強(qiáng)品牌保護(hù)意識(shí),對(duì)假冒產(chǎn)品予以打擊。

式中:kPP、kiP、kPQ、kiQ——DFIGPs及QsPI控制器的比例、積分系數(shù)。

圖3為DFIG SVM-DPC策略結(jié)構(gòu)框圖。

圖3 DFIG SVM-DPC結(jié)構(gòu)框圖

4 試驗(yàn)及結(jié)果分析

搭建雙饋風(fēng)力發(fā)電系統(tǒng)試驗(yàn)平臺(tái),將HC-DPC與SVM-DPC策略進(jìn)行對(duì)比試驗(yàn)。用直流電機(jī)-繞線式異步電機(jī)模擬風(fēng)力機(jī)-雙饋感應(yīng)發(fā)電機(jī)組。

繞線電機(jī)參數(shù):PN=3 kW,UN=380 V,nN=1 450 r/min;

直流電機(jī)參數(shù):PN=3 kW,UN=220 V,nN=1 500 r/min;

網(wǎng)側(cè)PWM變換器進(jìn)線電感8 mH,直流母線電壓200 V;PWM開(kāi)關(guān)頻率10 kHz;定子并網(wǎng)電壓180 V。圖4~圖6為試驗(yàn)波形。

圖4 穩(wěn)態(tài)波形

圖5 有功跟隨波形

圖6 無(wú)功突變波形

5 結(jié) 語(yǔ)

該文對(duì)DFIG的HC-DPC和SVM-DPC兩種控制策略進(jìn)行比較研究,得出如下結(jié)論:

(1) HC-DPC和SVM-DPC均能實(shí)現(xiàn)定子Ps、Qs良好的跟隨性能,且能實(shí)現(xiàn)Ps、Qs的解耦控制,定子功率因數(shù)任意可調(diào)。

(2) HC-DPC采用滯環(huán)控制器,其控制特性與PWM變換器的開(kāi)關(guān)非線性特性相匹配,具有快速的動(dòng)態(tài)響應(yīng)能力,但其開(kāi)關(guān)頻率不固定,靜態(tài)特性不佳,限制了其現(xiàn)場(chǎng)應(yīng)用;SVM-DPC開(kāi)關(guān)頻率恒定,具有良好的動(dòng)、靜態(tài)控制性能,但受PI參數(shù)的制約,動(dòng)態(tài)響應(yīng)比HC-DPC稍慢。

綜上所述,采用SVM-DPC能使系統(tǒng)同時(shí)具有良好的動(dòng)態(tài)和靜態(tài)性能,具有實(shí)際的應(yīng)用價(jià)值。

[1] 劉其輝,謝孟麗.雙饋式變速恒頻風(fēng)力發(fā)電機(jī)的空載及負(fù)載并網(wǎng)策略[J].電工技術(shù)學(xué)報(bào),2012,27(10): 60-67.

[2] LUNA A, LIMA F K, SANTOS D, et al. Simplified modeling of a DFIG for transient studies in wind power applications[J].IEEE Trans Ind Electron,2011,58(1):9-20.

[3] MOHSENI M, ISLAM S M, MASOUM M A.Enhanced hysteresis based current regulators in vector control of DFIG wind turbines[J].IEEE Trans Power Electron,2011,26(1): 223-234.

[4] NIAN H, SONG Y, ZHOU P, et al. Improved direct power control of a wind turbine driven doubly fed induction generator during transient grid voltage unbalance[J].IEEE Trans Energy Convers,2011,26(3):976-986.

[5] 趙方平,楊勇,阮毅,等.三相并網(wǎng)逆變器直接功率控制和直接功率預(yù)測(cè)控制的對(duì)比[J].電工技術(shù)學(xué)報(bào),2012,27(7): 212-220.

[6] XU L, CARTWRIGHT P. Direct active and reactive power control of DFIG for wind energy generation[J].IEEE Trans Energy Convers,2006,21(3): 740-748.

[7] DAWEI Z, LIE X. Direct power control of DFIG with constant switching frequency and improved transient performance[J].IEEE Transactions on Energy Conversion,2007,22(1): 110-118.

ComparativeStudyonDPCStrategyofDFIGGrid-SideConverter*

ZHANMeihua,ZHENGPeng,SUNNanhai,LIGuanglun

(School of Electrical Engineering & Automation, Luoyang Institute of Science and Technology,Luoyang 471023, China)

Two kinds of direct power control strategy of Doubly-fed Induction Generator (DFIG) were presented and made Comparative Study on their performance. According to the mathematical model of DFIG, The direct power control (DPC) model for DFIG was deduced. Firstly, the direct power control based on hysteresis controller (HC-DPC) strategy was presented, it implements directly decoupling control between DFIG stator active power and reactive power by hysteresis controller. Secondly, the SVM-DPC strategy was designed by applying the SVM technology to DPC. It had no rotor current control loop to implement directly decoupling control between DFIG stator active power and reactive power by PI controller. Finally, simulations and experiments did done for HC-DPC and SVM-DPC to verify its correctness and feasibility and compare its control performance.

doubly-fedinductiongenerator(DFIG);directpowercontrol(DPC);hysteresiscontroller;spacevectormodulation

國(guó)家自然科學(xué)青年基金項(xiàng)目(51407124);河南省高等學(xué)校重點(diǎn)科研項(xiàng)目(16A470012)

趙梅花(1966—),女,博士,副教授,研究方向?yàn)樾滦碗娏﹄娮幼儞Q及新能源發(fā)電技術(shù)。

TM 301.2

A

1673-6540(2017)10- 0053- 06

2017 -02 -22

猜你喜歡
策略模型
一半模型
基于“選—練—評(píng)”一體化的二輪復(fù)習(xí)策略
重要模型『一線三等角』
重尾非線性自回歸模型自加權(quán)M-估計(jì)的漸近分布
求初相φ的常見(jiàn)策略
例談未知角三角函數(shù)值的求解策略
我說(shuō)你做講策略
高中數(shù)學(xué)復(fù)習(xí)的具體策略
3D打印中的模型分割與打包
FLUKA幾何模型到CAD幾何模型轉(zhuǎn)換方法初步研究
主站蜘蛛池模板: 国产精品一老牛影视频| 欧美日韩国产系列在线观看| 日韩无码视频专区| 欧美精品亚洲精品日韩专区va| 91在线无码精品秘九色APP| 亚洲成AV人手机在线观看网站| 一区二区三区在线不卡免费| 国产免费网址| 中文字幕在线日本| 国内精品久久久久久久久久影视 | 亚洲成人精品在线| 国产无码精品在线| 亚洲精品黄| 综合社区亚洲熟妇p| 国产99在线观看| 在线国产欧美| 69视频国产| 国产一级毛片网站| 亚洲AV无码乱码在线观看代蜜桃| 亚洲视频四区| 97精品国产高清久久久久蜜芽| 国产精品专区第一页在线观看| 亚洲色图欧美一区| 亚洲小视频网站| 亚洲毛片网站| 亚洲国产中文欧美在线人成大黄瓜 | 免费人成在线观看成人片| 美女视频黄频a免费高清不卡| 久久99国产综合精品女同| 国产色爱av资源综合区| 国产成人做受免费视频| 一边摸一边做爽的视频17国产| 伊人AV天堂| 国产成人亚洲精品无码电影| 色综合天天娱乐综合网| 久久综合结合久久狠狠狠97色| 日本精品影院| 直接黄91麻豆网站| 亚洲色中色| 成人亚洲视频| 亚洲天堂免费观看| 天堂网国产| 国产swag在线观看| 久久青草免费91观看| 一本大道无码高清| 亚洲精品动漫| 国产无码性爱一区二区三区| 视频一本大道香蕉久在线播放| 欧美国产综合视频| 国产精品99久久久久久董美香| 丁香五月激情图片| 国产人人乐人人爱| 国产三级视频网站| 免费毛片网站在线观看| 欧美精品v| 五月婷婷亚洲综合| 国产精品露脸视频| 狠狠色狠狠综合久久| 五月六月伊人狠狠丁香网| 免费国产高清视频| 一本大道香蕉中文日本不卡高清二区| 国产一区二区三区精品久久呦| 手机精品福利在线观看| 宅男噜噜噜66国产在线观看| 伊伊人成亚洲综合人网7777| 亚洲91精品视频| 国产丝袜丝视频在线观看| 久久影院一区二区h| 国产农村1级毛片| 中文字幕无码中文字幕有码在线| 无码中文字幕乱码免费2| 久久成人免费| 欧美性色综合网| 国产伦精品一区二区三区视频优播| 久久精品波多野结衣| 亚洲天堂.com| 亚洲AV无码一区二区三区牲色| 午夜电影在线观看国产1区| 性欧美久久| 青青青国产免费线在| 99久久成人国产精品免费| 亚洲男人天堂2020|