寧夏彭陽縣第一中學 (756599)
楊莉莉
在圓錐曲線的教學與學習中,我們容易得到橢圓、雙曲線的如下兩個性質:


圖1



圖2

性質2的證明同性質1.此略.
我們發現用這兩個性質求解橢圓、雙曲線涉及到中點弦、弦中點的問題,具有思路簡潔、計算量小的特點,下面舉例予以展示.


又a2-b2=9,所以得b2=9,a2=18.故選D.


例3 (2015新課標卷理20題)已知橢圓C:9x2+y2=m2(m>0),直線l不過原點O且不平行于坐標軸,l與C有兩個交點A、B,線段AB的中點為M.
(1)證明:直線OM的斜率與直線l的斜率的乘積為定值;(2)略.
解:(1)的證明方法同性質1,得到直線OM的斜率與直線l的斜率的乘積為-9(定值).

(1)求C的離心率;(2)略.


(1)求實數m的取值范圍;(2)略.


圖3

(1)求橢圓C的方程;
(2)求ΔABP的面積取得最大時直線l的方程.




在數學教學中,特別是數學解題教學中,我們要引導學生善于發現問題、總結規律、提煉結論,并會用新的結論簡潔的解答數學問題.