孫曉坤
本文從傳統數學教學內容抽象性較高不易被接受的角度出發,展開對數學建模思想融入高等數學教學的思考與探索。在教學內容和教授過程中,融入恰當的數學模型,可將復雜抽象的問題利用模型簡單化、直觀化,激發學生的好奇心,提高學習興趣和主動性,結合建模興趣班和建模競賽,將建模思想思想融入到高等數學教學中,以培養學生應用數學解決問題的能力,提高學生的綜合素質。
高等數學作為高等院校教育的一門基礎課程,它構建了高等教育的基礎知識體系,為諸多后續課程的學習提供方法工具,同時有助于培養思維邏輯能力,在整個高等教育中占有非常重要的地位。高等數學教學主旨在于培養學生的數學思維能力,其難點在于培養學生應用數學角度和方法切實有效地解決一些實際應用問題的能力。在高等數學的教學中融入建模的思想,將理論與實際結合,有助于降低數學理論的抽象性,在模型引入、分析、求解的過程中既能達到培養的目的,也能有效地解決培養的難點問題。關于這方面的研究,浙江大學早在2003年就將數學建模納入教學過程。
本文的探討基于將數學建模的思想融入應用型本科的高等數學教學過程中,針對數學基礎并不深厚的應用型本科學生而言,通過引入數學模型提高學生學習興趣,培養能力,以達到更好的教學效果。
2.1 有效提高學生學習數學的興趣與信心
高等數學的課程教學與內容具有層面廣、抽象性高、課堂密度大的特點。而在應用型本科學生中,有相當一部分學生存在數學基礎較薄弱、對數學不感興趣、有“恐數”的心理狀態等狀況。要解決二者之間的矛盾,就需要考慮將課程內容實用化,因此在高等數學教學中適當融入數學建模的思想與實例,將一些復雜、抽象、難以理解的概念或內容借助實際的模型化繁為簡,化抽象為直觀,易于學生的理解接受,才能調動起學生的學習興趣,逐步建立起堅持學習數學并能學好數學的信心。
2.2 培養學生應用數學方法分析解決問題的能力
高等數學教學過程中,有不少學生會提出諸如這樣的困惑:“這”到底是什么,“這個”到底有什么用、要怎么用。這種問題往往是由于概念內容過于抽象,如果不能把概念、理論與實際問題結合探討,很難讓學生理解所學知識的本質和應用情況。
在課程教學中引入數學模型,結合實際應用中的一些實例的求解,給出數學的概念與方法,能讓學生清楚地看到所學是什么,所學為什么,所學怎么用,引導學生學習為實際問題建立模型加以求解的方法,逐漸培養學生應用數學方法解決問題的能力,并儲備好后續課程學習一些必需的數學工具。
3.1 把高等數學教學內容與數學模型相結合
社會經濟生活的很多問題都需要通過建立與數學有關的模型求解,而高等數學的許多概念理論本身雖然比較抽象難于理解,但在現實生活中都有一定的實際背景,在高等數學教學中,可根據教學內容從背景中抽取出適當的模型結合加以講授。例如,在講解第二個重要極限時,我們把它與定期存款利率對最終能拿到的存款額的影響結果聯系講解;再如,把現實生活中變速直線運動物體的瞬時速率的模型與函數的導數結合;把汽車外觀設計中的曲線確定問題與泰勒公式的作用相結合講解。這種方式提高了課堂了趣味性,也降低了理解的難度,同時也培養了學生把高等數學的學習和實際問題建立聯系的意識,提升了學習的效果。
3.2 “以例引入,以例引出”,在課堂教學中滲透數學建模的思想
高等數學的課堂教學實踐是最基礎、也是最直接的滲透數學建模思想的有效途徑,因此課堂講授知識內容時可以“以例引入”,最后再“以例引出”。以例引入,是指借助實際問題模型的建立與求解過程引入要介紹的知識內容。例如,在講授微分方程的相關內容時,可以設計一些簡單的微分方程模型,如現實生活中經常需要研究的汽車的剎車問題模型。根據問題分析如何建立其中的微分方程模型、如何求解模型等,完成對微分方程從概念,到方法到應用的介紹。以實例為依托,讓學生在課堂教學中既能對所學的內容有整體性的把握,也能兼顧到具體的知識點。以例引出,則是在完成課堂教學的基本要求基礎上,可以布置一些需要學生去學習研究的相關模型實例,讓學生鞏固所學,進行延伸性的學習。比如,在微分方程的初等積分法之后,組織學生完成對馬爾薩斯人口模型或是三級火箭發射模型的探討。利用帶有一定趣味性和應用意義的模型,讓學生把模型與所學內容建立聯系,這樣回歸到課程學習之后,可以使學生更有動力進行學習。
3.3 通過開設數學建模興趣班滲透建模的思想
在高等數學教學中融入數學建模的思想,非一朝一夕之事,而高等數學課程教學本身有其限制性,為彌補課程教學的不足,可開設數學建模興趣班,組建興趣小組。借此向學生介紹數學建模的基本思想,并結合經典案例或是大學生數學建模競賽的題目介紹建模的基本過程與方法,同時,也向學生介紹一些與建模關聯的一些學科和使用工具,諸如概率論、統計學等學科,Matlab,Maple,C語言等軟件。借助興趣班和興趣小組,一方面完成了對學生數學建模方法意識的基礎培訓;另一方同,也利用興趣班學生的感染力,讓更多的學生感受到數學建模與高等數學的聯系,提高學生學習的主動性;并且促進了學生去學習使用軟件解決一些數學問題。
3.4 利用數學建模競賽加強建模,激發學生的想象力和創造力
為促進學生能更好地理解數學的魅力,我們鼓勵交組織學生參加數學建模的各種競賽。為此,在高等數學教學初期始,就向學生滲透數學建模競賽的信息,引領學生在課余去學習建模方面的知識。當學生具備了一定的基礎后,組織學生參加全國大學生數學建模競賽,在有限時間里,充分發揮了學生學習與創造的能動性、想象力與創造力,使學生得到很好的鍛煉。參加數學建模競賽,往往還可以讓學生意識到學習上還存在的不足,促使學生接下去會更加認真地投入到高等數學等課程的學習中去。
在應用型本科的高等數學教學中融入數學建模的思想,通過數學模型與課程內容、課程教學的融合,把抽象的理論知識平常化,讓學生了解到高等數學離自己的生活并不遙遠,能夠增加學生對數學的興趣;借助建模的興趣班使學生學到建模和高等數學的相關內容,學習應用軟件求解數學問題的方法,通過參加數學建模競賽等方式,把數學建模融入到高等數學的教學中,有助于提升學生學習的興趣,使學生在掌握了基本的知識和內容基礎上,進一步培養了應用數學方法解決實際問題的能力。為達到更好的教學效果,培養高素質的人才,把數學建模的思想融入高等數學教學中,是應用本科型院校數學教學的一種有效的方法,也需要持續地去探尋更好的結合方式。
(作者單位:大連理工大學城市學院)