謝傳會

【摘要】深度學習是相對淺層學習而言的,作為一線教師,我們要努力促進學生深度學習,在教學實踐中,試著探索深度學習的路徑,本文從教材結構調整,來促進深度學習。在教學北師大版小學六年級數學“圖形幾何”部分時,發現“圓”和“圓柱與圓錐”兩部分內容是密切關聯的,它們體現出的數學思想方法是一致的,可是它們在內容安排上被隔離開了,這樣就削弱了數學學習的整體性和知識的聯系性。筆者試著探究兩部分之間的相關性,旨在把兩部內容安排在一個單元,培養學生數學思想方法。
【關鍵詞】教材結構 ?知識銜接 ?數學思想方法 ?深度學習
【中圖分類號】G42 ?【文獻標識碼】A 【文章編號】2095-3089(2019)17-0151-01
一、教學中“圓”和“圓柱與圓錐”的內容編排
二、主要內容教學
(一)圓的周長教學片段
在教學圓的周長時,我們是通過動手實踐操作,經過測量計算得出圓的周長的,圓周長公式的推導過程如下:
1.測量圓的周長
滾動法:在尺子上滾動圓,注意在圓上做個標記,正好滾動一周到標記的那一點就能測量出圓的周長了。
繞繩法:將線繩繞圓一周,再將線繩拉直,測量線繩的長度就是圓的周長。
圓的直徑:測量出你手中的圓的周長和它的直徑,并填好記錄單,然后找到它們的倍數,得出結論。
2.探究規律
發現圓的周長是直徑的三倍多一些,這是一個固定的數,我們把這個固定的倍數叫做圓周率。用字母“π”來表示。圓周率就是圓的周長與直徑的商(圓的周長÷直徑=圓周率,用字母表示C÷d=π),它的值在3.1415926—3.1415927之間,是一個無限不循環小數。在小學階段,我們計算時一般取兩位小數,π≈3.14即可?,F在運用計算機可以將圓周率的值計算到小數點后上億位。
推導圓周長公式:根據圓周長與直徑的倍數關系,推導出圓周長公式。C=πd,直徑是半徑的兩倍,所以C=2πr,知道直徑或半徑就可以計算出圓的周長。
(二)圓柱的表面教學片斷
1.創設情境,引起興趣
拿出圓柱體茶葉罐,誰能說說圓柱由哪幾部分組成的?想一想工人叔叔做這個茶葉罐是怎樣下料的?(學生會說出做兩個圓形的底面再加一個側面)那么大家猜猜側面是怎樣做成的呢?(說說自己的猜想)
2.自主探究,發現問題
研究圓柱側面積:
(1)獨立操作:利用手中的材料(紙質小圓柱,長方形紙,剪 刀),用自己喜歡的方式驗證剛才的猜想。
(2)觀察對比:觀察展開的圖形各部分與圓柱體有什么關系?
(3)小組交流:能用已有的知識計算它的面積嗎?
三、對“圓”和“圓柱與圓錐”銜接的探討
加強“圓”和“圓柱與圓錐”單元編排的系統性:
1.知識結構和數學思想方法
2.知識點之間的關系
圓的周長和圓的面積,圓的內容在教材中被安排在六年級數學上冊第一單元,在本單元中,圓的周長與圓的面積聯結在一起,圓的面積在圓的周長的基礎上建立起來的,這樣比較合理的。
圓柱的表面積和圓,圓柱的表面積是沿著高剪切下來,把圓柱的表面積轉化成長方形的面積和兩底圓的面積,其中長方形的長和圓的周長有關,底面積為兩圓的面積,這樣就圓柱的表面積和圓的周長和圓的面積建立了關系。
綜合上面知識點,可以看出圓的周長和圓的面積聯結緊密,圓的周長和圓的面積與圓柱的表面積聯結緊密,圓的周長和圓柱的體積聯結緊密,圓的面積和圓錐的體積聯結緊密??墒菆A的內容在上冊第一單元,與六年級數學下冊圓柱與圓錐這部分內容隔離開了,時間上相差一個學期,所以在教學下冊圓柱與圓錐內容時,許多數學生模糊或忘記了圓的周長和圓的面積內容,至于圓的面積推導過程更是沒有什么印象,特別是在教學圓柱的體積時,提問“學習計算圓的面積時,是怎樣推導出圓的面積計算公式的?”,學生回憶起來比較困難,忘記了學過的轉化方法,圓柱的體積是利用類似圓的面積轉化方法推導出來的,兩者在推導方法是相通的,學生在回憶轉化方法時,對上學期學習的知識已經遺忘,時間相隔一個學期,此時需要老師把上冊圓的內容重新講解,這樣造成知識點銜接不緊密,耽誤課程進度,知識點不能很好地連貫。筆者建議應把“圓”和“圓柱與圓柱”安排在一個單元,這樣教學過程比較流暢,知識之間的過渡也會很自然。
參考文獻:
[1]劉德宏.在小學數學教學中培養學生的類比推理能力[J].教學探究,2016(6):33.
[2]邵光華.作為教育任務的數學思想與方法[M].上海:上海教育出版社,2009:278-279.
[3]張奠宙,宋乃慶.數學教育概論[M].北京:高等教育出版社,2009:54.