999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

數學中考代數綜合題的命題規律及教學策略

2019-10-21 09:02:59陳建平
新智慧·中旬刊 2019年6期
關鍵詞:教學策略

陳建平

【摘要】結合新課標與考綱,通過對2017年幾個省的中考數學代數綜合題進行分析,尋找隱含在解題思路中相對穩定的命題規律,然后從“重視概念的精致,構建完善的認知結構”“重視數學思想方法領悟”“重視答題的心理狀態”三個角度和常規、融合、深化三個教學階段,制定相應的教學策略,提高學生解決此類數學問題的能力。

【關鍵詞】數學中考;代數綜合題;教學策略

代數綜合題是中考數學的必考題目,是實現試題區分度的主要題目之一,考察學生關于代數部分的綜合解題能力。在廣東中考的考綱中,明確規定第23題分值為9分,對于考生的總分能否上100分有決定性作用。因此,無論從提升學生的數學問題解決能力,還是從提高學生應試水平來看,研究它的教學策略都有著重要的意義和價值。筆者將對2017年的幾道中考數學代數綜合題進行分析。

一、真題呈現

如圖1,在平面直角坐標系中,拋物線y=-x2+ax+b交x軸于A(1,0),B(3,0)兩點,點P是拋物線上在第一象限內的一點,直線BP與y軸相交于點C。

(1)求拋物線y=-x2+ax+b的解析式;

(2)當點P是線段BC的中點時,求點P的坐標;

(3)在(2)的條件下,求sin∠OCB的值。

本題還用到2017年中考數學真題的“廣州卷第23題”、“嘉興卷第20題”、“深圳卷第21題”、“湖南省湘潭卷第25題”。

二、分析真題,尋找命題規律

(一)求函數解析式

上述真題考察了求解二次函數(拋物線)、一次函數(直線)、反比例函數(雙曲線)的解析式,而求解析式一般的做法是用待定系數法。待定系數法最關鍵一步是:得到在圖象上的點的坐標。

題型1,直接用待定系數法,把已知點代入。如廣東省的題目直接給出圖象上的兩點求兩個待定系數,湖南省的題目直接給出圖象上的一個點求出一個待定系數。題型2,轉換交點定義,給出兩個圖象的交點坐標。學生需要理解交點就是在每個相交的圖象上的點,如廣州、深圳、嘉興的題目。由于三元一次方程組是選修內容,因此題目一般不會給出圖象上三個點,用待定系數法求二次函數解析式。除非其中一個點是與y軸的交點,即獲得常數項c的值,從而代入數值即得二元一次方程組。題型3,給出的交點坐標含有未知數。要先用一個交點坐標求出其中一個解析式,再把另一個含有未知數的交點坐標代入,求出該交點坐標,如深圳、嘉興的題目。題型4,需要結合其他知識求出圖象上的點的坐標,如2016年廣東省的中考題第23題。給出一個已知點P,先要求出點P關于直線y=x對稱點Q(拋物線上點)的坐標。又如,2017廣州的中考題:二次函數y1的對稱軸與y2交于點A(-1,5),學生需要理解對稱軸就是x=-1,便可求出m的值,再把點A坐標代入,即可求出n的值,從而得到解析式。其第2問,若y2隨著的增大而增大,且y1與y2都經過x軸上的同一點。要求y2的解析式,只有一個點A的坐標是不夠的,還要尋找二次函數y2圖象上的另一點。“y1與y2都經過x軸上的同一點”,即告訴學生令y1=0,可以列出一個一元二次方程,求出與x軸交點,這就是y2經過的第2個點的橫坐標,由于與x軸交點,其縱坐標為0,于是就得到另一個點的坐標。

還有一些題目給出一次函數或反比例函數名稱但沒有給出解析式,需要先設解析式,再用待定系數求出其解析式。

(二)在函數圖象的背景下,構造三角形模型問題

題型1,構造直角三角形。如廣東題的第2小題,點P是線段BC的中點,知道點B的坐標,但不知道點C的坐標,無法利用中點公式求出點P的坐標。如果學生能用構造直角三角形的想法,便很容易獲得解題思路。如圖2,在Rt△ABC中,作PD垂直于直線AB于點D,則PD∥OC。此時,圖中出現了Rt△PBD和Rt△OBC。因為點P為線段BC中點,所以點D也為線段OB的點,所以點P的橫坐標為1.5。再把橫坐標代入二次函數解析式,便可求出點P的縱坐標。如果學生做第三問求sin∠OCB,想到在Rt△OBC中運用解直角三形的方法,會自然獲得解題思路,先求點C的坐標。而求點C的坐標,又需要用到前面Rt△PBD和Rt△OBC構成的圖形,得到OC=2PD。PD就是點P的縱坐標,前面已經求出,此題解題思路已明。深圳的題目(圖3)也可以構造兩個直角三角形,把證AD=BC的問題,轉化為求這兩個直角三角形全等的問題。圖2圖3

題型2,構造等腰三角形。嘉興題目的第二問,在軸上是否存在點,使其為等腰三角形?題目只給出線段AB(圖4),需要在x軸上找點P,連接PA、PB構造等腰三角形。可分三類情況構造等腰三角形,PA=AB、PB=AB、PA=PB。第1類以A為圓心,線段AB為半徑作圓,與x軸相交的點即為點P(圖中的P1、P2);第2類以B為圓心,線段AB為半徑作圓,與x軸相交的點即為點P(圖中的P3、P4)。最后一類,作線段AB的垂直平分線,與x軸相交的點即為點P(圖中的P5)。本題的點P是有限制的,要求n>0,即點P要在x軸的正半軸。因此符合要求的點P,只有P2、P4。湖南省湘潭市題目的最后一問,要在拋物線上找點P。比較容易想到的一種情況是,過點A作PA//BC,交拋物線點于P,由“兩直線平行,內錯角相等”可知此時點P為所求。但另外一種情況,就需要構造等腰三角形,如圖5,作線段AB的垂直平分線,交拋物線于點P,交x軸于點D,則△ABD為等腰三角形,AD=BD。

圖4圖5

題型2,把多邊形切割為三角形或梯形求面積最值。把廣東的題目進行變式,加上問題“在(2)的條件下,在線段PB上方的拋物線上找點Q,使得四邊形PABQ的面積最大,求此時點Q的坐標和四邊形PABQ的面積。”方法1(圖6),由于四邊形PABQ可以切割為△ABP和△PBQ,而⊿ABP是不變的,要求四邊形的最大值,即求△PBQ的最大值。過點Q作x軸的垂線并線段BC于點H。此時把△PBQ拆成△PQH和△BQH,拆成的兩個三角形,它們的底都是QH,高的和是點P與點B的橫坐標之差(固定值)。線段QH取最大值的時候,△PBQ的面積最大。QH的長度可以用拋物線與直線BC的解析式之差來表示,這樣就轉變為二次函數的最大值問題。方法2(圖7),把四邊形PABQ拆為△PAG、△BQH和梯形PGHQ。其中△PAG面積不變,梯形PGHQ與△BQH的和可以用含有x的函數來表示,轉化為求函數的最值問題。圖6圖7

三、教學策略

(一)重視概念的精致,構建完善的認知結構

數學教育心理學理論指出:個體對概念的理解結果既非來自外部提供的信息,也不是原來的長時記憶,而是思維過程的產物,認知心理學家將之稱為“精致的概念”。在數學學習中,“精致”的實質是對數學概念的內涵與外延進行盡量詳細的“深加工”,對“概念要素”進行具體界定,以使學生建立更清晰的概念表象,獲得更多的概念例證,對概念的細節把握得更加準確,理解概念的各個方面,獲得概念的某些限制條件等。對概念的精致越充分,越能形成良好的記憶。一旦某個概念出現遺忘,精致還可以幫助個體進行重新推導。對概念的另一種精致方式是組織。組織是對新信息分類并標明它們之間關系的過程。在概念的系統中學習概念,使所學概念與其相關的知識之間的聯系明確化,使概念的網絡結構更加清晰。這一過程使概念成為一種有層次的“組織”,其作用是能使人對記憶進行結構化地搜索,這將使概念的提取更加迅速和準確。[1]

因此,在中考數學代數綜合題的教學中,先讓學生把一次函數、二次函數、反比例函數各自的概念、性質理解透徹,再把三者結合一起研究學習,重新組織三者,進行混合運用。當對概念精致到一定程度后,自然會構建一個相對完善的認知結構。

(二)重視數學思想方法領悟

數學思想方法是數學的靈魂。因此把數學思想方法作為學生學習數學的核心素養是必要的。從上述討論構造三角形模型的解題思路,滲透著數學建模思想與數形結合思想;從圖中找等腰三角形,滲透著幾何直觀的思想;從構建函數解決面積最大值問題,滲透著函數的思想;求解析式時,使用待定系數法等。因此,在講解中滲透各種數學思想方法,讓學生領悟并掌握顯得尤為重要。

(三)重視答題的心理狀態

從每年廣東的中考評卷情況來看,大部分學生的第1、第2問做得并不理想。除了不會做的原因外,更重要的原因是心理狀態。要解決學生的畏難情緒,教師需要在平時教學中教會學生如何保持心理的平穩、安定、適度緊張的心理狀態。要學生在平時的解題中理解第1問一般是常規題,只要平時做到概念的精致,并且靈活組織運用三類函數,就能快速解決。如果遇到稍難的第2問,一般用化歸、建模、數形結合等數學思想可以解決。教師盡量不主張題海戰術,但適量的題目練習還是必須的。

四、結語

中考數學代數綜合題是歷年中考的拉分題,是提高試題區分度的主要題目。學生需要一個系統的專題教學才能達到中考考查優生的應有水平。本文只是選擇2017年的五道中考數學代數綜合題,必然存在一定的片面性,還有很多考察的題型并沒有在本文敘述。其次,如果能從一道基本的典型的母題,逐步變式,把所有的題型都能涉及,學生可能更容易領悟并掌握。

參考文獻:

[1]曹才翰,章建躍.數學教育心理學[M].北京:北京師范大學出版社,2006.

[2]鄒香根.淺談中考數學試題的題型及解題策略[J].中學教學參考,2015(08):47~48.

[3]張雁.中考數學復習專題四——代數與幾何綜合題復習[J].中學生數學,2013(06).

猜你喜歡
教學策略
英語語法教學策略談
甘肅教育(2020年17期)2020-10-28 09:02:50
低年級寫話教學策略
談教學策略的選擇和運用
甘肅教育(2020年2期)2020-09-11 08:00:26
群文閱讀教學策略談
甘肅教育(2020年14期)2020-09-11 07:58:36
談以生為本的群文閱讀教學策略
甘肅教育(2020年14期)2020-09-11 07:58:08
幼兒園線描畫教學策略
甘肅教育(2020年6期)2020-09-11 07:45:34
寫話教學策略初探
甘肅教育(2020年4期)2020-09-11 07:42:16
淺談復習課的有效教學策略
甘肅教育(2020年22期)2020-04-13 08:11:14
舞蹈教學策略之我見
甘肅教育(2020年22期)2020-04-13 08:11:10
小議初中書法教學策略
甘肅教育(2020年12期)2020-04-13 06:25:10
主站蜘蛛池模板: 激情无码视频在线看| 一级黄色片网| 精品免费在线视频| 夜色爽爽影院18禁妓女影院| 欧美日韩专区| 成人年鲁鲁在线观看视频| 国产97视频在线观看| 天堂在线www网亚洲| 国产二级毛片| 日韩A∨精品日韩精品无码| 国产成人精品一区二区| 亚洲a免费| 成人免费视频一区| 国产91在线|日本| 免费三A级毛片视频| 九九久久精品国产av片囯产区 | 免费全部高H视频无码无遮掩| 欧美a√在线| av一区二区无码在线| 国产一区在线视频观看| 精品夜恋影院亚洲欧洲| 人妻丰满熟妇av五码区| 久草热视频在线| 国产精品美女网站| 国产精品无码久久久久久| 欧美日韩国产在线人成app| 全部免费毛片免费播放| 亚洲无码在线午夜电影| 精品国产免费观看| 亚洲国产第一区二区香蕉| 看av免费毛片手机播放| 亚洲第一在线播放| 四虎永久免费网站| 99er这里只有精品| a亚洲视频| 亚洲 欧美 偷自乱 图片| 亚洲美女一级毛片| 久久99这里精品8国产| 精品无码人妻一区二区| 91人人妻人人做人人爽男同| 手机精品视频在线观看免费| 在线毛片免费| 亚洲系列无码专区偷窥无码| 免费人成黄页在线观看国产| 国产在线观看成人91 | 无码福利日韩神码福利片| 亚洲国产综合第一精品小说| 国产精品自在在线午夜区app| 欧美精品色视频| 久久久久国产精品免费免费不卡| 又爽又大又光又色的午夜视频| 91在线无码精品秘九色APP | 真人免费一级毛片一区二区| 亚洲日韩图片专区第1页| 国产女人18水真多毛片18精品| 国产人免费人成免费视频| 欧美性精品| 先锋资源久久| 亚洲精品中文字幕午夜| 区国产精品搜索视频| 黄色免费在线网址| 一个色综合久久| aaa国产一级毛片| jizz亚洲高清在线观看| 亚洲成人手机在线| 国产日韩av在线播放| 精品无码国产一区二区三区AV| 中文字幕亚洲专区第19页| 国产一级妓女av网站| 夜夜操狠狠操| 在线观看国产网址你懂的| 一区二区无码在线视频| 精品一区二区三区自慰喷水| 免费无码AV片在线观看国产| 极品私人尤物在线精品首页| 中文无码精品A∨在线观看不卡 | 国产高清在线观看91精品| 亚卅精品无码久久毛片乌克兰| 乱码国产乱码精品精在线播放| 日韩国产精品无码一区二区三区| 99精品欧美一区| 伊人激情久久综合中文字幕|