浙江省海亮實驗中學 何凌龍
新高考要求“立足基礎、切合教材、貼近生活、背景公平、適度創(chuàng)新”,歷年高考中出現(xiàn)的很多題目似曾相識,但又不完全相同,試題命制融入了考試說明的命題理念,以重點知識構建試題為主體,選材源于教材又高于教材,立意創(chuàng)新又樸實無華。實際上,我們只要認真研究一下近幾年的高考試題,還會發(fā)現(xiàn)更多課本例題或習題的影子。命題人匠心獨運,命制的試題“源于課本而又高于課本”,它給我們的復習備考指明了方向,那就是回歸課本,只有回歸課本,才能為高考備考找到有力的支撐。本文以人教版選修2-1 的一道例題為例,探究課本與高考之間的聯(lián)系。
教材是教學的載體,是高考命題的依據(jù),歷年的高考命題都與教材內容有著密不可分的聯(lián)系。在高三復習階段,如何利用好教材,真正做到“立足教材,回歸課本”,幫助學生構建數(shù)學知識體系,培養(yǎng)數(shù)學思維,對復習的成效有著至關重要的影響。下面我以人教版選修2-1 的第41 頁的例3 為例,探究高三一輪復習過程中做到“立足教材,回歸課本”,進行橫向聯(lián)系、縱向拓展的深度學習策略。
探究1:


探究2:在人教版選修2-1 的第55 頁有如下探究:


探究1 和探究2 研究的是斜率之積為定值的問題,很自然地會想:若是斜率之商(和,差)為定值,軌跡又會是什么?在課本選修2-1的第42、74、81 頁有相關習題出現(xiàn):(將乘積為定值改為商、差、和為定值)。
1.選修2-1 第42 頁的練習4:點A,B 的坐標分別是(-1,0),(1,0),直線AM,BM 相交于點M,且直線AM 的斜率與直線BM的斜率的商是2,點M 的軌跡是什么?為什么?
2.選修2-1 第74 頁習題B 組第3 題:已知點A,B 的坐標分別是(-1,0),(1,0),直線AM,BM 相交于點M,且直線AM的斜率與直線BM 的斜率的差是2,求點M 的軌跡方程。
3.選修2-1 第81 頁習題B 組第5 題:已知點A,B 的坐標分別是(-1,0),(1,0),直線AM,BM 相交于點M,且直線AM的斜率與直線BM 的斜率的和是2,求點M 的軌跡方程。
這一系列的問題通過變式的形式呈現(xiàn),通過分組探究,鍛煉學生解決新問題的能力,學會舉一反三思考問題的方式,進而使學生形成一題多解、類題一解的歸納總結的能力。
浙江高考對“圓錐曲線中斜率之積為e2-1”這個結論的考查十分頻繁,幾乎每年都有考查?,F(xiàn)僅列出下面三題加深學生對這部分知識的認識:



回歸課本,這實際上是一個重溫課本的過程,重溫學習經歷的過程,也是一個把課本由厚讀薄的過程,能夠幫助我們快速地梳理知識,構建知識網絡,強化數(shù)學思維,從而實現(xiàn)知識學習的融會貫通。回歸課本也有助于學生檢查自己在一些重要的知識點理解上是否存在缺失,驗證一些核心的數(shù)學概念和定理是否理解透徹,進而能夠更深層次地理解數(shù)學原理。