999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基本不等式在解題中的應(yīng)用

2021-05-30 10:44:00廖永福
數(shù)理化解題研究·高中版 2021年12期
關(guān)鍵詞:應(yīng)用

摘 要:本文以應(yīng)用的視角,探討基本不等式在求最值、證明不等式、解決恒成立問題、實(shí)際問題以及與其他知識(shí)點(diǎn)交匯的問題中的應(yīng)用.

關(guān)鍵詞:基本不等式;條件;高考;應(yīng)用

中圖分類號(hào):G632文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1008-0333(2021)34-0064-03

收稿日期:2021-09-05

作者簡介:廖永福(1962-),男,福建省仙游人,本科,中學(xué)高級(jí)教師,從事高中數(shù)學(xué)教學(xué)研究.[FQ)]

基本不等式結(jié)構(gòu)簡單,形式優(yōu)美,它是高中數(shù)學(xué)的重要內(nèi)容,也是高考數(shù)學(xué)的重要考點(diǎn).應(yīng)用時(shí)要依次滿足條件:一正、二定、三相等,三者缺一不可.基本不等式是解決最值問題的有力工具,在解題中有著廣泛的應(yīng)用.

一、求最值

應(yīng)用基本不等式求最值,關(guān)鍵在于構(gòu)造兩個(gè)正數(shù)之和(積)為定值,常用的方法有拆分法、配湊法、消元法和常數(shù)代換法等.基本不等式常用的變式有:(1)a2+b2≥2ab(a,b∈R);(2)2(a2+b2)≥(a+b)2(a,b∈R);

(3)(a+b2)2≥ab(a,b∈R);(4)2(a+b)≥(a+b)2(a,b∈R+)等,靈活應(yīng)用這些變式,有事半功倍之效.

例1 (2020·江蘇)已知5x2y2+y4=1(x,y∈R),則x2+y2的最小值是.

分析 思路一:由條件等式消去x2,可得x2+y2=15y2+45y2,符合兩個(gè)正數(shù)15y2、45y2之積為定值,應(yīng)用基本不等式可解.

思路二:由條件等式可得4=(5x2+y2)·4y2,它表明兩個(gè)正數(shù)5x2+y2、4y2之積為定值,根據(jù)基本不等式的變式ab≤(a+b2)2(a,b∈R),可知5x2+y2與4y2之和有最小值.解法一(消元法) 由5x2y2+y4=1,得x2=1-y45y2.∵x2≥0,∴y2∈(0,1].

∴x2+y2=1-y45y2+y2=15y2+45y2≥215y2·4y25=45.

當(dāng)且僅當(dāng)15y2=45y2,即y2=12時(shí),上式取“=”.

這時(shí)x2=1-y45y2=310,x2+y2的最小值為45.

解法二 (配湊法)∵4=(5x2+y2)·4y2≤(5x2+y2+4y22)2=254(x2+y2)2,∴x2+y2≥45.

當(dāng)且僅當(dāng)5x2+y2=4y2=2,即y2=12,x2=310時(shí),上式取“=”.

∴x2+y2的最小值為45.故答案為45.

點(diǎn)評(píng) 本題考查應(yīng)用基本不等式求最值,考查轉(zhuǎn)化思想和運(yùn)算能力.解法一思路樸實(shí),過程直接.解題關(guān)鍵是消元.把目標(biāo)代數(shù)式表示成關(guān)于y的函數(shù),直接應(yīng)用基本不等式求解;解法二構(gòu)思巧妙,方法靈活,解題關(guān)鍵是由條件等式構(gòu)造出兩個(gè)正數(shù)5x2+y2與4y2之積為定值,進(jìn)而可用基本不等式的變式求解,屬于中檔題.

二、證明不等式

應(yīng)用基本不等式證明不等式,常常與分析法、綜合法、作差(商)法等結(jié)合使用,解題關(guān)鍵依然是構(gòu)造兩個(gè)正數(shù)之和(積)為定值,使之符合基本不等式的三個(gè)條件.

例2 (2020·全國卷Ⅲ(理))設(shè)a,b,c∈R,a+b+c=0,abc=1.

(1)證明:ab+bc+ca<0;

(2)用max{a,b,c}表示a,b,c中的最大值,證明:max{a,b,c}≥34.

分析 (1)由(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0結(jié)合不等式的性質(zhì),即可得出證明;(2)不妨設(shè)max{a,b,c}=a,由題意得出a>0,b,c<0,由a3=a2·a=b+c2bc=b2+c2+2bcbc,結(jié)合基本不等式,即可得出證明.

解答 (1)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=0,

∴ab+bc+ca=-12a2+b2+c2.

∵abc=1,∴a,b,c均不為0,則a2+b2+c2>0,

∴ab+bc+ca=-12a2+b2+c2<0.

(2)不妨設(shè)max{a,b,c}=a,由a+b+c=0,abc=1可知,a>0,b<0,c<0.

∵a=-b-c,a=1bc,∴a3=a2·a=b+c2bc=b2+c2+2bcbc≥2bc+2bcbc=4.

當(dāng)且僅當(dāng)b=c時(shí),上式取“=”,∴a≥34,即max{a,b,c}≥34.

點(diǎn)評(píng) 本題主要考查不等式的性質(zhì)以及基本不等式的應(yīng)用,屬于中檔題.

三、恒成立問題

對于含參數(shù)的不等式恒成立問題,常常將它轉(zhuǎn)化為函數(shù)的最值問題求解.常用的結(jié)論有:(1)任意x∈D,f(x)>m恒成立f(x)min>m;(2)對任意x∈D,f(x)

例3 (2017·天津(理))已知函數(shù)f(x)=x2-x+3,x≤1,x+2x,x>1.設(shè)a∈R,若關(guān)于x的不等式f(x)≥|x2+a|在R上恒成立,則a的取值范圍是().

A.[-4716,2]B.[-4716,3916]C.[-23,2]D.[-23,3916]

分析 關(guān)于x的不等式f(x)≥x2+a在R上恒成立等價(jià)于-f(x)-x2≤a≤f(x)-x2在R上恒成立,于是問題轉(zhuǎn)化為函數(shù)的最值問題.

解答 關(guān)于x的不等式f(x)≥x2+a在R上恒成立等價(jià)于-f(x)≤a+x2≤f(x),即-f(x)-x2≤a≤f(x)-x2在R上恒成立.

設(shè)g(x)=-f(x)-x2,h(x)=f(x)-x2,則g(x)max≤a≤h(x)min.

當(dāng)x≤1時(shí),g(x)=-x2+x2-3=-(x-14)2-4716,當(dāng)x=14時(shí),g(x)max=-4716;

h(x)=x2-32x+3=(x-34)2+3916,當(dāng)x=34時(shí),h(x)min=3916.所以-4716≤a≤3916.

當(dāng)x>1時(shí),g(x)=-32x-2x=-(32x+2x)≤-23,當(dāng)且僅當(dāng)32x=2x,即x=233時(shí),“=”成立,故

g(x)max=-23;

h(x)=x2+2x≥2x2×2x=2,當(dāng)且僅當(dāng)x2=2x,即x=2時(shí),“=”成立,故h(x)min=2.

所以-23≤a≤2.

綜上,-4716≤a≤2.故選A.

點(diǎn)評(píng) 本題考查絕對值不等式,考查不等式恒成立問題的解法,考查二次函數(shù)最值的求法,考查利用基本不等式求函數(shù)的最值.解題關(guān)鍵是如何把不等式恒成立問題轉(zhuǎn)化為函數(shù)的最值問題,屬中檔題.

四、實(shí)際問題

應(yīng)用基本不等式解決實(shí)際問題時(shí),一般把要求最值的變量定義為因變量,根據(jù)實(shí)際問題抽象出函數(shù)的解析式后,利用基本不等式求出函數(shù)的最值,注意檢驗(yàn)解是否在定義域內(nèi).

例4 (2017·江蘇)某公司一年購買某種貨物600噸,每次購買x噸,運(yùn)費(fèi)為6萬元/次,一年的總存儲(chǔ)費(fèi)用為4x萬元.要使一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小,則x的值是.

分析 寫出一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和y=600x×6+4x(0

解答 依題意,一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和y=600x×6+4x(0

∵y=600x×6+4x≥2600x×6×4x=240(萬元),

∴當(dāng)且僅當(dāng)600x×6=4x,即x=30時(shí),上式取“=”.故答案為30.

點(diǎn)評(píng) 本題考查基本不等式的實(shí)際應(yīng)用,考查推理與運(yùn)算能力,屬中檔題.

五、與其它知識(shí)點(diǎn)交匯的問題

與其它知識(shí)點(diǎn)交匯的問題是高考的熱點(diǎn),解決這類問題一般從這些知識(shí)點(diǎn)出發(fā),建立變量之間的等量關(guān)系,再選用適當(dāng)?shù)姆椒ㄇ蠼?

例5 (2018·江蘇)在△ABC中,角A,B,C所對的邊分別為a,b,c,∠ABC=120°,∠ABC的平分線交AC于點(diǎn)D,且BD=1,則4a+c的最小值為.

分析 根據(jù)面積關(guān)系建立a,c的方程,再用基本不等式求解.

解答 由題意可知,S△ABC=S△ABD+S△BCD,由角平分線性質(zhì)和三角形面積公式得12acsin120°=12a×1×sin60°+12c×1×sin60°.

化簡,得ac=a+c,1a+1c=1.

因此4a+c=(4a+c)(1a+1c)=5+ca+4ac≥5+2ca·4ac=9.

當(dāng)且僅當(dāng)ca=4ac,即c=2a=3時(shí),上式取“=”.所以4a+c的最小值為9.

點(diǎn)評(píng) 本題考查三角形的面積公式,考查基本不等式的應(yīng)用,利用常數(shù)代換法是解決本題的關(guān)鍵,屬中檔題.

例6 (2020·全國卷Ⅱ(理))設(shè)O為坐標(biāo)原點(diǎn),直線x=a與雙曲線C:x2a2-y2b2=1(a>0,b>0)的兩條漸近線分別交于D,E兩點(diǎn),若△ODE的面積為8,則C的焦距的最小值為().

A.4B.8C.16D.32

分析 根據(jù)雙曲線的漸近線方程求出點(diǎn)D,E的坐標(biāo),根據(jù)△ODE的面積為8,可得ab的值,再結(jié)合基本不等式,即可求得答案.

解答 由題意可得雙曲線的漸近線方程是y=±bax,分別將x=a代入上式得y=±b,即D(a,b),E(a,-b).∴△ODE的面積為S△ODE=12a·2b=ab=8.

∴C的焦距2c=2a2+b2≥22ab=8.

當(dāng)且僅當(dāng)a=b=22時(shí),上式取“=”.∴C的焦距的最小值為8.故選B.

點(diǎn)評(píng) 本題主要考查雙曲線的性質(zhì)和漸近線方程,考查基本不等式的應(yīng)用,解題關(guān)鍵是應(yīng)用a2+b2≥2ab建立雙曲線的焦距與△ODE的面積之間的關(guān)系,屬于中檔題.

從上述例子可以看出,應(yīng)用基本不等式解題要注意以下兩點(diǎn):一是注意基本不等式成立的條件;二是合理構(gòu)造基本不等式中的和或積.

練習(xí)

1.(2020·海南)已知a>0,b>0,且a+b=1,則().

A.a2+b2≥12 B.2a-b>12

C.log2a+log2b≥-2D.a+b≤2

2.(2020·天津)已知a>0,b>0,且ab=1,則12a+12b+8a+b的最小值為.

3.(2013·上海)設(shè)常數(shù)a>0,若9x+a2x≥a+1對一切正實(shí)數(shù)x成立,則a的取值范圍為.

4.(2014·湖北)某項(xiàng)研究表明:在考慮行車安全的情況下,某路段車流量F(單位時(shí)間內(nèi)經(jīng)過測量點(diǎn)的車輛數(shù),單位:輛/小時(shí))與車流速度v(假設(shè)車輛以相同速度v行駛,單位:米/秒)、平均車長l(單位:米)的值有關(guān),其公式為F=76000vv2+18v+20l.

(1)如果不限定車型,l=6.05,則最大車流量為輛/小時(shí);

(2)如果限定車型,l=5,則最大車流量比(1)中的最大車流量增加輛/小時(shí).

5.(2020·全國卷Ⅱ(理))△ABC中,sin2A-sin2B-sin2C=sinBsinC.

(1)求A;(2)若BC=3,求△ABC周長的最大值.

答案:1.ABD 2.4 3.[15,+SymboleB@) 4.1900,100

5.(1)2π3;(2)3+23.

參考文獻(xiàn):

[1]鄧清.基本不等式解高中數(shù)學(xué)問題探析[J].數(shù)學(xué)學(xué)習(xí)與研究,2019(19):139.

[2]葉珊.基本不等式的應(yīng)用問題例談[J].數(shù)理化解題研究,2019(34):31-32.

[責(zé)任編輯:李 璟]

猜你喜歡
應(yīng)用
配網(wǎng)自動(dòng)化技術(shù)的應(yīng)用探討
科技視界(2016年21期)2016-10-17 19:54:47
帶壓堵漏技術(shù)在檢修中的應(yīng)用
科技視界(2016年21期)2016-10-17 19:54:05
行列式的性質(zhì)及若干應(yīng)用
科技視界(2016年21期)2016-10-17 18:46:46
癌癥擴(kuò)散和治療研究中的微分方程模型
科技視界(2016年21期)2016-10-17 18:37:58
紅外線測溫儀在汽車診斷中的應(yīng)用
科技視界(2016年21期)2016-10-17 18:28:05
多媒體技術(shù)在小學(xué)語文教學(xué)中的應(yīng)用研究
考試周刊(2016年76期)2016-10-09 08:45:44
微課的翻轉(zhuǎn)課堂在英語教學(xué)中的應(yīng)用研究
分析膜技術(shù)及其在電廠水處理中的應(yīng)用
科技視界(2016年20期)2016-09-29 14:22:00
GM(1,1)白化微分優(yōu)化方程預(yù)測模型建模過程應(yīng)用分析
科技視界(2016年20期)2016-09-29 12:03:12
煤礦井下坑道鉆機(jī)人機(jī)工程學(xué)應(yīng)用分析
科技視界(2016年20期)2016-09-29 11:47:01
主站蜘蛛池模板: 伊人激情综合网| 9999在线视频| 国产成人精品免费av| 在线国产三级| 亚洲日韩精品综合在线一区二区 | www.99精品视频在线播放| 中文字幕人成人乱码亚洲电影| 99热这里只有免费国产精品 | 国产日韩精品一区在线不卡| 久久综合丝袜日本网| 刘亦菲一区二区在线观看| 农村乱人伦一区二区| 日韩二区三区无| av在线人妻熟妇| 东京热高清无码精品| 激情无码视频在线看| 一边摸一边做爽的视频17国产| 国产精品私拍在线爆乳| 漂亮人妻被中出中文字幕久久| 久久亚洲欧美综合| av性天堂网| 免费高清a毛片| 国产成人精品午夜视频'| AV不卡在线永久免费观看| 九九九久久国产精品| 亚洲热线99精品视频| 亚洲免费福利视频| 国产麻豆精品在线观看| 99久久国产综合精品2020| A级毛片无码久久精品免费| 成年片色大黄全免费网站久久| 欧美一级黄片一区2区| 国产激情无码一区二区三区免费| 91毛片网| 55夜色66夜色国产精品视频| 四虎国产成人免费观看| 国产精品理论片| 久久综合丝袜长腿丝袜| 日韩人妻无码制服丝袜视频| 亚洲无码精彩视频在线观看| 国产成人精品男人的天堂下载| 亚洲成人网在线播放| 又污又黄又无遮挡网站| 国产精品99r8在线观看| 久久人人爽人人爽人人片aV东京热 | 精品无码一区二区三区电影| 国产精品2| 久久久国产精品免费视频| 一区二区影院| 欧美成人一区午夜福利在线| 欧美日韩91| 午夜精品影院| 亚洲欧美日韩成人高清在线一区| 超碰色了色| 亚洲国产精品一区二区第一页免| 亚洲aaa视频| 久久精品免费看一| 国产在线一区视频| 色综合狠狠操| 亚洲综合天堂网| 毛片手机在线看| 国内精品久久人妻无码大片高| 国产内射在线观看| 美女亚洲一区| 亚洲国语自产一区第二页| 欧美视频二区| 91在线激情在线观看| 亚洲免费福利视频| 亚洲国产成人无码AV在线影院L| 97精品伊人久久大香线蕉| 欧美国产综合视频| 久久久久亚洲精品无码网站| 青青热久麻豆精品视频在线观看| 国产肉感大码AV无码| 国产在线一二三区| 国产精品永久在线| 精品亚洲国产成人AV| 女人18毛片一级毛片在线| 中文字幕在线欧美| 无码高潮喷水在线观看| 青草精品视频| 亚洲成A人V欧美综合|