李曉紅
計算是數學知識中的重要內容之一,首先計算能力是小學生必須形成的基本技能之一,它訓練了學生思維的嚴密性和行為的嚴謹性,在小學數學教材中計算所占比重很大。其次學生計算能力的高低直接影響著學生的學習質量和興趣,因為數學應用題的解題思路、步驟、結果要通過計算來落實;幾何知識中周長、面積、體積等公式的推導與運用同樣離不開計算;簡易方程、統計圖表等知識也無不與計算密切相關。因此筆算是當今數學教學的基本點之一,也是難點之一。
一、學生在計算能力方面存在的問題
(1)缺乏扎實的基礎知識和熟練的基本技能。部分學生由于基礎不扎實,簡單的運算口訣不熟練,在分數的混合運算中一些常用的、簡單的互化數據不熟練,一些基本的整數四則混合運算定律沒有很好掌握,口算能力、列式計算能力都較弱,不能正確、靈活的解題,導致計算速度慢、正確率低。
(2)缺乏良好的計算習慣。部分學生計算時書寫馬虎,題目看錯抄錯;字跡潦草,6、0不分,5、3互變,1、7混同,4、9模棱兩可。運算順序錯誤如,3.5+1.5-3.5+1.5(應等于3,而誤得0),3.6-3.6×0.5(應等于1.8,而誤得0),7.56÷0.4×2.5(應等于47.25,而誤得7.56),無論數字大小、熟練與否一律口算,不愿動筆演算;即使演算也是隨意的在桌子上、作業本或試卷背面及邊緣上演算;在草稿上列豎式時也是東一道西一道,數位不對齊,字跡潦草、密密麻麻連自己也不認不清是什么字,做好了從來不檢查等等。
二、如何在教學中來根據具體的教學情境來有效的對學生的計算能力進行培養
(1)建立四則運算概念。在具體情境中體會運算意義。通過設定一個具體的數學情境,用于幫助學生來體會,更容易建立起對四則運算的真正含義。例如:講解除法的含義時,可以先舉出一個用乘法解決的問題,然后在改變條件,出現一個用除法解決的問題。面包店里,每個5元,買12個面包多少元?用乘法計算。改成面包店里,每個5元,75元可以買幾個面包?或者面包店里,用85元可以買17個面包。每個面包多少元?學生經過分析用除法計算,從而建立起乘法和除法是互逆的關系。
(2)課堂上加強學生對算法和算理的掌握。首先必須使學生明確怎樣算,也就是加強法則及算理的理解。在進行計算的新授課時,對算法和算理的教學必須是準確的。算理探究和算法掌握具有同等重要的地位。算法是解決“怎么算”的問題,即計算法則。算理是解決“為什么這樣算”的問題。比如學習“連除的簡便運算”時,我們不僅僅是讓學生通過對一組數據的觀察對比,總結出方法是20÷5÷2=20÷(5×2),一個數連續除以兩個數,可以除以兩個數的積。“為什么可以這樣?”我們利用多媒體演示了平均分的過程,讓學生很直觀的看出二者最終平均分的份數相同,這樣從除法的意義出發解決“為什么可以這樣算”的問題。因此,課堂教學中應該讓學生在理解的基礎上掌握算法。
三、加強口算訓練
每位同學都要打好口算基礎,加強口算訓練,提高口算能力。首先,掌握方法。如:運用數的組成計算10以內的加減法;用湊十法,計算20以內的進位加法;做減法,想加法;轉化為整十數加減一位數;轉化成20 以內的加減法;把兩位數加減整十數轉化成一位數減一位數;先把兩位數加減兩位數轉化成兩位數加減整十數,然后再轉化成兩位數加減一位數;用乘法口訣直接求積、求商;根據乘法分配律進行口算;在四則混合運算中,教給學生一些運算技能,不斷提高口算能力。其次,有些知識,要通過課堂教學的訓練,每節數學課,教師視教學內容和學生實際,選擇適當的時間,安排3~5分鐘的口算練習,學生每人準備一本口算本,這樣長期進行,持之以恒,能收到良好的效果。使學生能脫口而出,并做到準確無誤,只有這樣,計算起來才能正確迅速。針對學生的注意力不易集中,持久性差的特點,有意設計安排一些形式多樣的練習和數學游戲來激發學生口算練習的積極性和學習興趣。如:開展靈活多樣的競賽活動,像心算、速算、開火車、奪紅旗、爬階梯、集體賽、個別賽等比賽形式,在提高計算能力的同時,還增強了學生們的進取心和集體榮譽感,陶冶了情操。
四、在教學中,要注意估算能力的培養
在小學階段的計算教學中,與估算相關的內容很多,如估計商的近似值、試商、估計小數乘法的結果、用估算進行驗算,等等。要體現《標準》中“加強估算”的要求,可以著力于以下兩方面:
(1)培養數感是打好估算的基礎。在估算中數感主要表現為能在具體情境中把握數的相對大小關系,能為解決問題而選擇適當的算法,能對結果的合理性作出解釋。指導學生養成“估算、計算、審查”的習慣,有助于學生適時找出自己在解題中的偏差,重新思考和演算,從而預防和減少差錯的產生,提高計算能力。
(2)掌握估算方法,養成估算習慣。小學生最常使用的估算方法主要有三種:簡約、轉換和補償。所謂“簡約”,是指學生在估算時先把數簡化成比較簡單的形式。例如估算“495+310”,把?495看作500,把310看作300,這樣估算時只要想比較簡單的形式“500+300”,即可。所謂“轉換”,是指學生在估算時把一種問題轉換成另一種問題來思考。例如,估算加法問題“602+597+589”,把加法問題轉換為乘法問題:“600乘3是?1800,所以答案差不多是1800左右。”而所謂“補償”,則是學生在進行簡約或轉換時,進行一些調整,以補償前面運算中的不足,使估算比較準確。例如,“602+597+ 589”這一問題,學生在轉換時可能會進一步想:“答案大約是1800,而且會稍小于1800,因為我在將每一個數都簡化成600時,用加的部分比用減的更多一些。”
總之,在具體的數學情境中來拓展和培養學生的計算能力,可以達到事半功倍的教學效果。