路建 陶小燕 張宏利 周紅梅 高蘇楠



[摘要] 目的 評價麻醉和手術導致老年小鼠腦內能量代謝紊亂與雷帕霉素靶蛋白(mTOR)信號通路的關系。 方法 選取健康雄性C57BL/6小鼠64只,18月齡,隨機分為兩組(n=32):對照組(C組)和麻醉手術組(A/S組)。于術后第3天進行Morris水迷宮測試;于術后第1和第3天時取海馬組織,采用Western blot法檢測GLUT1、mTOR和磷酸化mTOR(p-mTOR)的水平,計算p-mTOR/mTOR比值;采用ATP試劑盒檢測海馬ATP濃度;于術后第1天和第3天時取腦組織進行切片、免疫熒光染色,觀察海馬GLUT1和p-mTOR表達情況。 結果 兩組小鼠潛伏期隨時間變化呈降低趨勢,其中A/S組小鼠在術后第6天潛伏期高于C組(P<0.01),兩組小鼠潛伏期不存在時間和組間的交互作用(P>0.05)。術后第7天A/S組穿越平臺次數和平臺象限游泳時間均低于C組(P<0.01)。與C組比較,A/S組術后1、3 d時海馬GLUT1表達減弱,p-mTOR表達增強(P<0.01)。與C組比較,A/S組術后1、3 d時海馬GLUT1水平降低,p-mTOR/mTOR比值升高(P<0.01)。A/S組術后1 d和3 d時海馬ATP水平低于C組(P<0.01)。 結論 麻醉手術導致老年小鼠腦內能量代謝紊亂的機制可能與mTOR信號通路活化有關。
[關鍵詞] 葡萄糖轉運蛋白1;麻醉手術;老年;認知障礙
[中圖分類號] R741? ? ? ? ? [文獻標識碼] A? ? ? ? ? [文章編號] 1673-9701(2022)09-0034-04
Relationship between energy metabolism disorders and mammalian target of rapamycin (mTOR) signaling pathway in elderly mice induced by anesthesia and surgery
LU Jian1 TAO Xiaoyan2 ZHANG Hongli1 ZHOU Hongmei1 GAO Su′nan1
1.Department of Anesthesiology, the Second Affiliated Hospital of Jiaxing University, Jiaxing? ?314000,China;2.Ward 29, the Second Affiliated Hospital of Jiaxing University, Jiaxing? ?314000,China
[Abstract] Objective To evaluate the relationship between energy metabolism disorders and mammalian target of rapamycin (mTOR) signaling pathway in elderly mice induced by anesthesia and surgery. Methods Sixty-four healthy male C57BL/6 mice aged 18 months were randomly divided into two groups (n=32),the control group (group the C) and the operation with anesthesia group (group the A/S). The Morris Water Maze test was performed on postoperative day 3.The levels of GLUT1, mTOR and phosphorylated mTOR (p-mTOR) were detected by Western blot, and the p-mTOR/mTOR ratio was calculated. The ATP concentration in hippocampus was detected by the ATP kit. The brain tissue was sectioned and stained with immunofluorescence on days 1 and 3 after operation. The expressions of GLUT1 and p-mTOR in hippocampus was observed. Results The incubation period of mice in the two groups decreased with the change of time, and the incubation period of mice in the A/S group was higher than that in the C group on the 6th day after operation (P<0.01),and no interaction existed between the two groups and each time points (P>0.05).The times of platform crossing and platform quadrant swimming time in the A/S group were lower than those in the C group on postoperative day 7 (P<0.01).Compared with the C group, the expressions of GLUT1 were decreased and the expressions of p-mTOR were increased in the A/S group at days 1 and 3 after operation (P<0.01).Compared with the C group, the levels of GLUT1 in hippocampus of the A/S group were decreased and the p-mTOR/mTOR ratios were increased at days 1 and 3 after operation (P<0.01). The levels of ATP in the hippocampus of the A/S group were lower than those of the C group at days 1 and 3 after operation (P<0.01). Conclusion The mechanism of energy metabolism disorder in the brain of elderly mice induced by operation with anesthesia may be related to the activation of mTOR signaling pathway.
[Key words] Glucose transporter 1 (GLUT1); Operation with anesthesia; Elderly; Cognitive disorder
術后認知功能障礙(postoperative cognitive dysfunction,POCD)是麻醉手術后中樞神經系統的常見并發癥[1],可持續數天或數周,延長住院時間,增加住院花費。目前POCD具體的發病機制尚不清楚。圍術期患者常出現血糖水平的波動,葡萄糖代謝紊亂與認知功能損害有關[2]。有學者認為大腦能量代謝紊亂是多種因素綜合作用造成,并導致神經認知功能障礙[3],并且葡萄糖轉運蛋白1(the glucose transporter 1,GLUT1)在維持腦內能量穩態中非常重要[4]。mTOR可以通過調控能量代謝等作用,參與調節突觸可塑性、認知功能等[5]。麻醉手術導致腦內能量代謝紊亂的機制是否與mTOR信號通路有關尚待證明。本研究擬評價麻醉手術導致老年小鼠腦內能量代謝紊亂與mTOR信號通路活化的關系,現報道如下。
1 材料與方法
1.1 動物與分組
選取健康雄性C57BL/6小鼠64只,體重(35.6±2.5)g,18月齡,由湖南SJA實驗動物公司提供[動物許可證號SYXK(鄂)2018-0101]。在實驗前,小鼠適應新環境7 d。采用隨機數字表法分為兩組(n=32):對照組(C組)和麻醉手術組(A/S組)。對照組小鼠不做任何處理,麻醉手術組小鼠在異氟醚麻醉下行剖腹探查術。
1.2 動物造模
小鼠在異氟醚(麻醉誘導為4.0%和維持2.0%,魯南貝特制藥有限公司,國藥準字H20020267,批號64191201)麻醉下行剖腹探查術[6]。首先行腹中線切開術(長度3 cm);其次,將無菌棉簽浸入濕生理鹽水中,依次探查肝、脾、腎、小腸等器官3 min,暴露3 min,整個過程需30 min,加溫板保持溫度在36~37 ℃之間。
1.3 Morris水迷宮實驗
每組取12只小鼠,A/S組小鼠在術后休息2 d,第3天用水迷宮測試小鼠認知功能。定位航行試驗測試4 d,然后進行空間探索試驗1 d。
1.4 免疫熒光檢測海馬GLUT1和p-mTOR的表達
于術后第1天和第3天時,每組取4只小鼠,暴露心臟,灌注4%冷多聚甲醛。取腦、脫水、石蠟包埋。將切片與抗體結合,在4℃孵育過夜,洗滌。用共焦顯微鏡(Eclipse C1,尼康)獲取圖像。使用Image-Pro-Plus 6.0對熒光信號強度進行量化。
1.5 Western blot法檢測海馬GLUT1、p-mTOR和mTOR表達
于術后第1天和第3天時,每組取6只小鼠,取腦,分離海馬。海馬勻漿離心,取上清。轉膜,加入抗體,曝光、掃描。采用Alpha Ease FC(Alpha Innotech)軟件測定條帶灰度值,以目的蛋白條帶灰度值與β-actin條帶灰度值的比值反映目的蛋白的表達水平。
1.6 ATP試劑盒檢測海馬ATP濃度
于術后第1天和第3天時,取海馬組織,制備勻漿,離心取上清液。用ATP試劑盒(S0026B,Bwyotime)測定海馬組織ATP濃度。
1.7 統計學方法
應用SPSS 20.0統計軟件分析,正態分布的計量資料以均數±標準差(x±s)表示,不同時間點組間比較采用雙因素方差分析,兩組間比較采用t檢驗,P<0.05為差異有統計學意義。
2 結果
2.1 兩組小鼠不同時點潛伏期和游泳速度比較
A/S組小鼠在術后第6天潛伏期高于對照組(P<0.01),兩組小鼠潛伏期不存在時間和組間的交互作用(P>0.05);兩組小鼠游泳速度比較,差異無統計學意義(P>0.05)。見表1~2。
2.2 兩組小鼠空間探索試驗比較
A/S組小鼠穿越平臺次數及平臺象限游泳時間比C組降低(P<0.01)。見表3。
2.3 兩組小鼠不同時點海馬GLUT1和p-mTOR表達
GLUT1陽性細胞染色為紅色,細胞核染色為藍色;p-mTOR陽性細胞染色為綠色,細胞核染色為藍色。C組海馬GULT1高表達和p-mTOR低表達,A/S組術后第1天和第3天時海馬GLUT1表達減弱,而p-mTOR表達增強。見封三圖3~4。
2.4 兩組小鼠不同時點海馬GLUT1和p-mTOR免疫熒光定量比較
與C組比較,A/S組術后第1天、第3天時海馬GLUT1表達減少,p-mTOR表達增加(P<0.01)。見表4。
2.5 兩組小鼠不同時點海馬GLUT1、ATP水平和p-mTOR/mTOR比較
與C組比較,A/S組術后第1天、第3天時海馬GLUT1、ATP水平降低,p-mTOR/mTOR值升高(P<0.01)。見表5。
3 討論
Morris水迷宮實驗是測試小鼠認知功能的常用方法。逃避潛伏期反映小鼠空間學習能力,目標象限活動時間反映小鼠空間記憶能力。本研究結果表明,在第4天的定位航行試驗中,A/S組小鼠潛伏期比C組小鼠明顯延長,目標象限活動時間明顯縮短,提示麻醉手術損害了老年小鼠的參考記憶能力。兩組小鼠間游泳速度比較,差異無統計學意義(P>0.05),提示所有小鼠的運動能力沒有差異。
在神經系統中能量的主要來源是葡萄糖[7]的有氧代謝,腦組織區域性葡萄糖代謝低下患輕度認知障礙的風險增加三倍[8]。大腦中的小血管疾病采用Fazekas評分量表進行量化,研究顯示Fazekas評分與腦組織局部腦糖代謝呈負相關。腦糖代謝降低可能會導致AD患者的認知障礙[9]。提高大腦葡萄糖代謝水平,可以改善AD小鼠學習記憶能力[10]。而葡萄糖是極性分子,需要血腦屏障血管內皮細胞上的GLUT1的轉運才能透過血腦屏障進入腦內。高血糖和低血糖顯著影響人類的大腦健康,特別是認知功能。研究顯示,腦微血管中GLUT1水平與腦葡萄糖攝取相關[11],且GLUT1表達減少加重AD的認知功能損害[12],提示GLUT1可能是治療神經膠質細胞和神經元功能障礙的新靶點。本研究結果表明,麻醉手術創傷導致海馬GLUT1蛋白表達下調,ATP水平下降。Sun等[13]研究顯示,葡萄糖能減弱異氟醚誘導的ATP水平下降,提示葡萄糖可能減弱麻醉相關的神經毒性作用。上述研究結果提示,GLUT1可能是腦內葡萄糖代謝紊亂相關的神經認識功能障礙的重要治療靶點。
mTOR信號通路在神經退行性疾病和術后認知功能障礙的發生中發揮重要作用[5,14]。最近mTOR被認為是AD早期的生物標志物,mTOR衰減可能會阻止AD的發生和發展[15]。因此,mTOR抑制劑可能具有治療與認知功能減退性疾病的潛力。研究表明,mTOR過度活化引起磷酸化胰島素受體[16],導致其內化引起胰島素抵抗,影響葡萄糖的正常轉運[17]。增加AD小鼠海馬GLUT1表達,可改善腦糖代謝紊亂[18]。因此,mTOR水平的動態平衡是保持腦葡萄糖代謝正常的重要條件。本研究結果表明,麻醉手術后小鼠海馬mTOR磷酸化水平升高,GLUT1和ATP水平下降,提示麻醉手術所致小鼠海馬ATP水平下降的機制可能與mTOR信號通路過度活化有關。麻醉手術激活海馬mTOR信號通路和抑制GLUT1表達的具體機制還需進一步研究。
綜上所述,麻醉手術導致腦內能量代謝紊亂的機制可能與mTOR信號通路活化有關。
[參考文獻]
[1]? ?Olotu C.Postoperative neurocognitive disorders[J].Curr Opin Anaesthesiol,2020, 33(1):101-108.
[2]? ?Díaz-Venegas C,Schneider DC,Myrskyl?覿 M,et al. Life expectancy with and without cognitive impairment by diabetes status among older Americans[J].PLoS One,2017, 12(12):e0190 488.
[3]? ?Lin X,Chen Y,Zhang P,et al. The potential mechanism of postoperative cognitive dysfunction in older people[J].Exp Gerontol,2020,130:110 791.
[4]? ?Koepsell H.Glucose transporters in brain in health and disease[J].Pflugers Arch,2020,472(9):1299-1343.
[5]? ?Mueed Z,Mehta D,Rai PK,et al. Cross-interplay between osmolytes and mTOR in Alzheimer's disease pathogenesis[J]. Curr Pharm Des,2020,26(37):4699-4711.
[6]? ?Qiu LL,Pan W,Luo D,et al. Dysregulation of BDNF/TrkB signaling mediated by NMDAR/Ca2+/calpain might contribute to postoperative cognitive dysfunction in aging mice[J]. J Neuroinflammation,2020,17(1):23.
[7]? ?Butterfield DA,Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease[J].Nat Rev Neurosci,2019,20(3):148-160.
[8]? ?Krell-Roesch J,Syrjanen JA,Vassilaki M,et al. Brain regional glucose metabolism,neuropsychiatric symptoms,and the risk of incident mild cognitive impairment:The mayo clinic study of aging[J].Am J Geriatr Psychiatry,2021, 29(2):179-191.
[9]? ?No HJ,Yi HA,Won KS,et al. Association between white matter lesions and the cerebral glucose metabolism in patients with cognitive impairment[J]. Rev Esp Med Nucl Imagen Mol,2019,38(3):160-166.
[10]? 曹瑾,唐銀杉,李昱頡,等.“通督啟神”法電針治療對APP/PS1雙轉基因小鼠腦葡萄糖代謝和學習記憶能力的影響[J].中華中醫藥,2016,31(5):1983-1987.
[11]? Koepsell H. Glucose transporters in brain in health and dis- ease[J]. Pflugers Arch,2020,472(9):1299-1343.
[12]? G?覬uchowska K,Pliszka M,Szablewski L. Expression of glu- cose transporters in human neurodegenerative diseases[J]. Biochem Biophys Res Commun,2021,540:8-15.
[13]? Sun Y,Zhang Y,Cheng B,et al. Glucose may attenuate isoflurane-induced caspase-3 activation in H4 human neuroglioma cells[J].Anesth Analg,2014,119(6): 1373-1380.
[14]? Gao S,Zhang S,Zhou H,et al. Role of mTOR-regulated autophagy in synaptic plasticity related proteins downregulation and the reference memory deficits induced by anesthesia/surgery in aged mice[J].Front Aging Neurosci,2021,13:628 541.
[15]? Van Skike CE,Lin AL,Roberts Burbank R,et al. mTOR drives cerebrovascular, synaptic,and cognitive dysfunction in normative aging[J].Aging Cell,2020, 19(1):e13 057.
[16]? Romanelli RJ,LeBeau AP,Fulmer CG,et al. Insulin-like growth factor type-I receptor internalization and recycling mediate the sustained phosphorylation of Akt[J].J Biol Chem,2007,282(31):22 513-22 524.
[17]? Wang J,Tong H,Wang X,et al. Tanshinone IIA alleviates the damage of neurocytes by targeting GLUT1 in ischaemia reperfusion model (in vivo and in vitro experiments)[J]. Folia Neuropathol,2020,58(2):176-193.
[18]? Mana L,Feng H,Dong Y,et al. Effect of chinese herbal compound GAPT on the early brain glucose metabolism of APP/PS1 transgenic mice[J].Int J Immunopathol Pharmacol,2019,33:1-13.
[19]? Geng J,Zhang Y,Li S,et al. Metabolomic profiling reveals that reprogramming of cerebral glucose metabolism is involved in ischemic preconditioning-induced neuroprotection in a rodent model of ischemic stroke[J].J Proteome Res,2019, 18(1):57-68.
[20]? Vorhees CV,Williams MT. Morris water maze: Procedures for assessing spatial and related forms of learning and memory[J]. Nat Protoc,2006,1(2):848-858.
(收稿日期:2021-03-09)