趙 琪
(青島酒店管理職業技術學院 商業數據研究中心,山東 青島 266100)
高科技企業的成長與發展離不開人力資本與物質資本的高效投入,而人力資本是衡量高科技企業核心競爭力的決定性因素。人力資本是支撐高科技企業可持續發展的源泉,對人力資本進行有效配置,能顯著促進高科技企業成長。一般來說,高科技企業的研發投入與人力資本投入與其經營績效呈正相關關系,高質量的人力資本結構能為企業帶來持久的競爭優勢,成長型人力資本對高科技企業績效的促進作用更加顯著。
當前,為了在激烈的市場競爭中爭取到主導技術優勢,很多高科技企業實施探索性研究和需求導向研究相結合,追求產業創新尖端技術,這就為高科技企業的市場開發優勢與高校的知識生產優勢的協同創造了條件。從研發投入與人力資本投入的角度來看,資金來源的水平不僅僅決定創新知識生產能力,還影響著企業創新的績效。從人力資本結構的角度來看,創新知識的生產除了考慮物質條件,還必須考慮的是人力資本因素,科技人員的規模與素質是保證知識生產能力的重要因素。從知識存量的分析來看,具有豐富科研成果的高學歷科研人員和具有精湛技術的科技人員更傾向于產學合作,豐富的經驗使科研人員可以明確后續研究工作的路徑,并且通過繼續教育與培訓的開展,全面提高研究人員的研究能力和技術人員的創新能力,更有利于企業的創新績效。
知識傳播過程是從生產到應用的過渡知識階段,其本質是高科技企業創新系統所具有的隱性知識和顯性知識相互轉化和促進的過程,知識傳播對創新績效具有重要意義。在人才培養方面,通過高等教育和科研機構的共同支持,可以將科研技術的優勢轉化為人才培養的優勢,促進高科技企業創新系統中科技人員構成比率的提升,優化高科技企業創新系統中人力資本的結構。同時,由于產學研合作過程中的信息不對稱、存在交易成本等不確定性,組織需要建立高度的信息合作關系來鼓勵合作者互相交換有價值的信息與知識,從而提升產學研合作的知識轉移績效。企業人力資本存量與人力資本投資額的增長、人力資本投資結構的改善均能有效促進高科技企業創新績效的提升。
一般而言,由于人力資本具有異質性,不同行業人力資本對企業經營績效的影響效果差別較大,多數文章以行業或企業類型的截面數據為研究對象,較少有文獻從宏觀角度對高科技企業創新系統進行剖析。同一行業的研究數據雖然在某種程度上具有趨勢一致性,但每個高科技企業因其主營業務的側重性、企業文化與所有制結構的獨特性等,其人力資本成長模式都是自成一體的,因此,使用宏觀數據對高科技企業進行深度解剖更具有研究價值。
本研究選取科學技術部火炬高技術產業開發中心的《火炬計劃統計報表》(2008-2019年)數據為樣本,對全國高新技術企業主要經濟指標應用面板數據模型進行實證分析。面板數據模型能夠較好地反映研究對象在時間和截面單元兩個方向上的變化規律及不同時間與不同單元的特征。本文選擇全國高新技術企業的31個省市自治區2014-2019年的技術收入(INCOME)、科技活動人員數量(STAFF)、科技活動經費內部支出(EXP)作為變量,構建面板數據模型進行分析。
運用計量軟件EVIEWS10,應用2014-2019年技術收入(INCOME)與科技活動經費內部支出(EXP)作為變量選擇面板數據個體固定效應回歸模型。從回歸結果來看,各解釋變量的符號與預期符號基本相同,且均達到較高的顯著性水平。相應的表達式是:
其中虛擬變量D1,D2.....D31的定義是:
通過方程可以看出,31個省市自治區的科技活動經費支出占技術收入的64%。隨著地區不同,科技活動經費支出存在顯著性差異。北京、河北、上海、浙江、湖北、廣東、四川的高新技術企業科技支出明顯高于其他地區。
運用計量軟件EVIEWS10,應用2014-2019年技術收入(INCOME)與科技活動人員數量(STAFF)作為變量選擇面板數據個體固定效應回歸模型,從回歸結果來看,各解釋變量的符號與預期符號基本相同,且均達到較高的顯著性水平。相應的表達式是:
其中虛擬變量D1,D2.....D31的定義是:
通過方程可以看出,31個省市自治區的科技活動人員數量占技術收入的267%。隨著地區不同,科技活動人員數量存在顯著性差異。北京、天津、河北、上海、浙江、湖北、廣東、四川的高新技術企業科技人員數量高于其他地區。
根據回歸結果,結合我國高科技企業的具體情況,可以得出結論:高科技企業創新經營績效與人力資本的投入息息相關。科技活動人員數量、科技活動經費內部支出等均與企業績效之間呈正相關關系。為了使高科技企業創新經營績效水平有進一步的提升,應注重在增加科技活動人員數量、提高科技活動經費內部支出增加企業人力資本存量,完善企業人力資本結構,具體體現在完善科技人員薪酬福利制度、增加科技人員崗位技能培訓機會、優化科技人員學歷層次等。
分析高科技企業人力資本成長對創新績效的帶動程度大小,可以參考高科技企業人力資本成長對創新績效的長期和短期效應的分析,運用協整和誤差修正模型來實現。為了分析出高科技企業人力資本成長對創新績效的長短期效應,運用協整和誤差修正模型,得出的結論在高科技企業人力資本成長投資方向選擇上具有一定的參考意義。
誤差修正模型是通過協整的長期均衡關系來修正對于短期的波動,通常用來均衡的偏差調整機制,協整與長期均衡的關系,是經濟變量的長期與短期變化模型,其中:
長期趨勢模型:yt=α0+α1xt+εt
短期波動模型:Δyt=β0Δxt+γecmt-1+εt
具體步驟為:
(1)在檢驗因變量和自變量之間協整性的基礎上估計協整回歸方程,計算殘差序列et。
(2)將et-1作為一個解釋變量,估計誤差修正模型:Δyt=β0Δxt+γet-1+vt。在估計出ECM的基礎上,檢驗模型的殘差是否存在自相關性。如果存在自相關性,則在ECM的右端加入Δyt和Δxt的滯后項,相應調整誤差修正項的滯后期。如取成以下形式:
Δyt=β0Δxt+β1Δxt-1+β2Δyt-1+β3Δxt-2+β4Δyt-2+γet-1+vt
由于模型中的各項都是平穩變量,選用t檢驗判斷各項的顯著性,將其中不顯著的變量逐個剔除,盡可能保留誤差修正項。
考慮到數據的可得性和可操作性,選取科學技術部火炬高技術產業開發中心的《火炬計劃統計報表》(2012-2018年)數據為樣本,對火炬特色產業基地主要經濟指標進行統計分析。以火炬特色產業基地內企業從業人員情況為例,利用運用協整和誤差修正模型,研究高科技企業人力資本成長對創新績效的帶動效應,將不同學歷的科技企業從業人員對企業創新績效的彈性系數進行比較得出結論,為高科技企業人力資本結構優化提供理論依據。
3.2.1 收集數據
鑒于統計口徑的不同和數據的可得性,收集到的2012-2018年火炬特色產業基地主要經濟指標相關數據如表1,數據均來自于科學技術部火炬高技術產業開發中心的《火炬計劃統計報表》(2012-2018年)。本文分別研究不同學歷的科技企業從業人員對產學研協同創新績效的影響大小,然后進行比較分析和對策研究。
表1 火炬特色產業基地主要經濟指標(2012-2018年)
3.2.2 單位根檢驗
在上述2012-2018年數據中,將火炬特色產業基地中科技企業的主要經濟指標分別設為:X1代表大專及本科從業人員、X2代表碩士從業人員、X3代表博士從業人員、X4代表企業博士后工作站數量、X5代表省級企業技術中心數量、X6代表R&D支出情況。下面以博士從業人員為例,論證其與凈利潤的關系,測算博士從業人員對火炬特色產業基地高科技企業產學研協同創新績效的長短期效應。鑒于在分析經濟問題時,變量一般以對數形式出現,本文對凈利潤Y等主要經濟指標進行對數處理,對凈利潤、大專及本科從業人員、碩士從業人員、博士從業人員、企業博士后工作站數量、省級企業技術中心數量、R&D支出進行對數處理,分別設為LNY、LNX1、LNX2、LNX3、LNX4、LNX5、LNX6。
(1)對凈利潤(LNY)序列進行單位根(ADF)檢驗。提出假設H0:γ=1 存在單位根;H1 :γ≠1存在單位根。對序列的原水平進行ADF檢驗(選擇模型為有截距項和時間趨勢項的模型),檢驗結果如表2。
表2 凈利潤序列ADF檢驗結果
其中,t檢驗統計量值-7.217831小于相應臨界值,則拒絕原假設,說明序列不存在單位根,序列平穩。說明LNY序列在顯著性水平a=0.1下平穩。
(2)對博士從業人員(LNX3)進行單位根(ADF)檢驗。提出假設H0:γ=1 存在單位根;H1 :γ≠1存在單位根。對序列的原水平進行ADF檢驗(選擇模型為有截距項和時間趨勢項的模型),檢驗結果見表3。
表3 博士從業人員序列ADF檢驗結果
其中t檢驗統計量值-3.472433小于相應臨界值,則拒絕原假設,說明序列不存在單位根,序列平穩。說明序列在顯著性水平a=0.1下平穩。
由于凈利潤(LNY)序列與博士從業人員(LNX3)序列,都為一階單整的平穩數列,且從時序圖中來看,兩者極有可能存在協整關系。倘若兩者存在協整關系,就可做出一個平穩序列來描述原變量之間的均衡關系。
3.2.3 協整檢驗
采用EG兩步法檢驗進行協整檢驗。對LNY和LNX3,以LNX3作為自變量,LNY作為因變量,用最小二乘法做回歸,得到回歸方程的估計結果:
LNY=0.538848 LNX3+8.265103 (R2=0.96)
在得到殘差序列后,對殘差序列進行ADF檢驗,同樣提出假設H0:γ=1 存在單位根;H1 :γ≠1存在單位根。
在1%的顯著性水平下,單位根檢驗的Mackinnon臨界值為-1.597291、t檢驗統計量值-2.366646小于相應臨界值,則拒絕原假設說明序列不存在單位根,序列平穩。殘差平穩且LNY與LNX3一階單整序列,二者具有協整關系,LNY與LNX3存在長期均衡,兩者具有協整關系且并不是偽回歸,可以建立誤差修正模型。
3.2.4 誤差修正模型的建立
將殘差序列作為誤差修正項,建立回歸方程,得到誤差修正模型為:
Δlny=0.544433Δlnx3-1.056593(lnyt-1-0538848lnx3t-1-0.8265103)
(R2=0.76)
通過和上文所得到的結果LNY=0.538848LNX3+8.265103 相比較可以發現:長期彈性系數0.538848與短期彈性系數0.544433和結果相近,即博士從業人員對高科技企業產學研協同創新績效的彈性系數為0.54,說明博士從業人員每增加1%,會帶動高科技企業產學研協同創新績效增長0.54%,具有較強的帶動作用,且沒有時滯性。
3.2.5 結果分析
應用同樣方法可得以下結果:
(1)大專及本科從業人員(LNX1)同凈利潤(LNY)的關系。
長期均衡結果:LNY=0.8935LNX1+3.528945 (R2=0.97)
誤差修正模型:Δlny=1.020886Δlnx1-0.837008(lnyt-1-0.8935lnx1t-1-3.528945)
通過比較可以發現:長期彈性系數為0.8935,而短期彈性系數為1.02,說明大專以上從業人員每增加1%,短期內會帶動高科技企業產學研協同創新績效增長1.02%,長期內會帶動高科技企業產學研協同創新績效增長0.89%。
(2)碩士從業人員(LNX2)同凈利潤(LNY)的關系。
長期均衡結果:LNY=0.441571LNX2+7.561928 (R2=0.97)
誤差修正模型:
Δlny=0.472197Δlnx2-0.836759(lnyt-1-0.44157lnx2t-1-7.561928)
通過比較可以發現:長期彈性系數為0.44157,而短期彈性系數為0.472197,說明碩士從業人員每增加1%,短期內會帶動高科技企業產學研協同創新績效增長0.47%,長期內會帶動高科技企業產學研協同創新績效增長0.44%。
(3)博士后工作站數量(LNX4)同凈利潤(LNY)的關系。
長期均衡結果:LNY=0.596695LNX4+4.610745 (R2=0.95)
誤差修正模型:
Δlny=0.927655Δlnx4-1.366622(lnyt-1-0.596695lnx4t-1-4.610745)
通過比較可以發現:長期彈性系數為0.596695,而短期彈性系數為0.927655,說明博士后工作站數量每增加1%,短期內會帶動高科技企業產學研協同創新績效增長0.93%,長期內會帶動高科技企業產學研協同創新績效增長0.59%。
3.2.6 實證結論
表4 學歷層次結構對高科技企業產學研協同績效的彈性系數比較
從對比表4可以看出,高科技企業博士后工作站的設立,可以促進產學研協同,為企業引進和培養高水平人才,提高企業的技術創新能力,推進企業的技術進步,加快科技成果轉化為生產力。作為影響高科技企業創新績效的關鍵因素,短期和長期彈性系數均為最大,很大程度上帶動了我國高科技企業創新績效。碩士、博士數量對高科技企業創新績效的帶動地位也比較強勁,但存在一定的長短期彈性差異,不同學歷層次結構從業人員數量對高科技企業創新績效的帶動的長期效應相對于短期效應均出現了一定程度的下降。
高科技企業從業人員學歷層次結構對創新績效的帶動作用具有一定的階段性,運用協整和誤差修正模型,通過分別測算及從業人員學歷層次結構對產學研協同績效增長的長短期效應,可以分析該層次人力資本結構的效率與成長性。通過以上實證結果可以得出,不管在長期還是短期時間內,博士從業人員數量與博士后科研工作站數量的彈性系數最大,對高科技企業創新績效的帶動作用最強。需整合企業人力資源,充分利用高學歷人才資源優勢,實現產學協同績效的提升。