蘇曙光 龐靖靖
(1.安徽安兆工程技術咨詢服務有限公司 合肥 230000 2.安徽省引江濟淮集團有限公司 合肥 230000)
引江濟淮工程(安徽段)是一項以城鄉供水和發展江淮航運為主,結合灌溉補水和改善巢湖及淮河水生態環境等綜合利用的大型跨流域調水工程,是安徽省基礎設施建設“一號工程”,工程初步設計批復總投資875.37 億元。項目法人為安徽省引江濟淮集團有限公司。截至2021年1月31日,該工程已完成招標采購概算金額合計5287029.10 萬元,占批復工程投資的93.89%,有必要對已實施的招標采購工作進行評估,目標評估是其主要內容之一。
目前國內外后評估的方法很多,大體上可分為對比分析法和綜合評估法兩大類。對比分析法的實質是選定合適的評估指標體系,對這些指標逐項進行計算分析,對比有、無項目情況,權衡利弊得失,評估項目的實施效果。綜合評估法則可在對評估指標對比分析的基礎上進行綜合評判,從而可以從整體去評估項目的實施效果。考慮本工程招標采購目標評估的特點及涉及指標的諸多模糊性,本文采用層次分析法-熵權法-模糊綜合評估相結合的評估方法,發揮出各個方法的優勢,使得評估結果更為準確客觀。
層次分析法-熵權法-模糊綜合評估相結合的評估方法的步驟包括評估指標體系構建、評估指標權重計算、評估指標權重的修正、模糊綜合評估法綜合評估。
本次評估采用層次分析法來確定評估指標的權重,它可以將決策者的定性判斷和定量計算有效結合起來,而且這種多層次分別賦權法可避免大量指標同時賦權的混亂與失誤,從而提高賦權的簡便性和準確性。具體步驟如下:
3.1.1 建立遞階層次結構模型
本工程招標采購目標評估具有復雜性和多目標性,涉及因素眾多,要結合這些因素對其進行評估,首先應進行層次分析,并根據工程具體情況,建立遞階層次結構評估體系。經仔細篩選、提煉概括,選出頗具代表性的招標采購目標評估指標見圖1。

圖1 引江濟淮工程招標采購目標層次圖
3.1.2 專家打分構造判斷矩陣
發放專家咨詢意見表,并不要求專家確定權重的具體值,而只要確定兩兩指標之間的相對重要性,相對重要的程度可用自然數1,2,3,…,9,及倒數1/2,1/3,…,1/9 表示,其數值所表達的含義見表1。

表1 標度的含義表
根據專家咨詢意見表構造判斷矩陣,求其最大特征根及其對應的特征向量,如果通過一致性檢驗,則可將特征向量的值作為權重。
3.1.3 求解特征值和特征向量
以上判斷矩陣Y=(Yij)。具有如下特征:Yij=1/Yji,(i,j=1,2,...,m),Yij>0,Yii=1。
1)計算判斷矩陣每一行的乘積Mi:

2)計算Mi的n 次方根:

3)將方根向量歸一化:

得近似特征向量W=(W1,W2......,Wm)T即為排序權向量。
4)計算判斷矩陣最大特征值λmax:

式中:(XW)i為向量XW 的第i 個元素。
3.1.4 一致性檢驗
由于專家知識的有限性、個體判斷事物的主觀性,難免會在判斷兩兩指標間重要性時,產生矛盾的結果,此時就需要修正原判斷矩陣,使得滿足一致性檢驗未知。其計算公式如下:
計算一致性指標:

當CI=0 時,判斷矩陣具有完全一致性,反之亦然。
若CR<0.10 時,認為矩陣具有滿意的一致性,否則重新調整矩陣直至滿意。式(6)中RI為平均隨機一致性指標,不同階數的一致性檢驗參數見表2。

表2 平均隨機一致性指標表
3.1.5 合成權重的計算
以此進行合成初始權重的計算,獲得指標層相對與目標層的綜合權重。
層次分析法是運用專家實踐經驗獲得的數據,因素間相對程度不容易精確把握,而熵權法則可以客觀修正專家主觀思維引起的數據誤差,克服主觀賦權的不足。因此,本次評估運用熵權法對層次分析法確定的指標權重進行修正。
1)對構造的判斷矩陣各列項進行歸一化處理,其結果表示為qij,則:

2)計算第j 個指標的熵值Ej:

3)求指標的偏差度dj:

4)計算指標的信息權重μj:

5)利用信息權重μj修正層次分析法得出的指標權重Wj,得到新的指標權重為λj,公式如下:

將各指標初始權重帶入式(7)~(11),可知各指標權重經過熵權法修正后的最終權重。
對工程招標采購后評估指標體系的評估運用,本次評估采用多級模糊綜合評判。多級模糊綜合評估評判過程如下:
3.3.1 確定因素集
根據本評估工程招標采購后評估指標體系得出指標集,設定第一層次影響評估結果的指標有m 個。其中,μi為最高層指標中的第i 個因素指標,由下級n 個因素指標決定,即μi={μi1,μi2,...,μin}。
3.3.2 建立權重集
根據各層因素指標間重要程度,獲得權重(由層次分析法和熵權法確定)。最高層因素權重假設為a1,a2,...,am,則最高層權重集合為A={a1,a2,...,am}(i=1,2,...,m),其中ai是最高層中第i 個因素μi的權重。
同理,以后各層權重集可假設Ai={ai1,ai2,...,aim}(j=1,2,...,n),其中aij是決定因素μi的第j 個因素μij的權重。
3.3.3 建立評語集
按照評估結果的確定,建立評語集合。假設有P個評判等級,則評語集可表達為V={v1,v2,...,vk...,vp}(k=1,2,...,p),其中,vk為總評估集的第k 個可能的評估結果。
3.3.4 一級模糊綜合評判
從最底層指標因素開始,對該層因素μij評判。得到V 上的模糊集Rij={rij1,rij2,...,rijk,...,rijp},通過模糊集確定i 個模糊關系,獲得評判矩陣,則第二層次的單因素評判矩陣為:

第二層次的模糊判斷集為:

3.3.5 二級模糊綜合評判
通過一級模糊綜合評判得出上級單因素評判,將所有因素進行組合,得出二級模糊綜合評判。

二級模糊綜合評判集為:

式中:bk表示評語集中的第k 個評語結果。
通過概念模型中介紹的綜合評估方法,建立起該實際問題的評估因素集U 和評語集V。評估因素集U={Y1,Y2,Y3},評語集V={優,良,中,差}。
采用專家調查法,對該項目招標采購目標進行打分,從而得出該項目招標采購目標的綜合評估矩陣,所得結果如表3 所示。

表3 模糊綜合評估表
將表3 中的評語集代入式(12)~(13)進行兩次模糊評判得到評語集為(0.833 0.1418 0.02560),根據最大隸屬度原則,對照評語等級標準,本工程招標采購目標取得“優”的效果。
根據引江濟淮工程招標采購目標評估特點,選用層次分析法-熵權法-模糊綜合評估法,對本工程招標采購活動的合法合規性、競爭擇優性、創新適用性目標進行綜合分析,評估招標采購目標的實現程度,得出的結論與過程評估、效果評估和可持續性評估相匹配,驗證了其合理可行性,可供其他大型工程招標采購目標評估借鑒■