999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

高毒力肺炎克雷伯菌臨床感染特征及毒力因子研究進(jìn)展

2023-04-29 00:00:00趙杭何知恩張慧敏曹嘉欣孫寶林
國外醫(yī)藥抗生素分冊 2023年2期

摘要:肺炎克雷伯菌是常見的革蘭陰性機(jī)會致病菌,引發(fā)多種感染疾病。而高毒力肺炎克雷伯菌的出現(xiàn)不僅在健康人群中傳播致病,并且伴有感染擴(kuò)散轉(zhuǎn)移、損傷中樞神經(jīng)等危害。其主要毒力因子包括莢膜多糖、可移動遺傳元件、調(diào)控基因、鐵載體等。且由于可移動遺傳因子的傳播導(dǎo)致高毒力肺炎克雷伯菌已經(jīng)出現(xiàn)了與耐藥性的協(xié)同,嚴(yán)重危害公共安全衛(wèi)生。因此本文對其臨床感染特征、毒力因子、與耐藥性的協(xié)同進(jìn)行綜述,以便為后續(xù)的研究提供參考。

關(guān)鍵詞:肺炎克雷伯菌;高毒力;毒力因子;耐藥性;鐵載體;多位點(diǎn)序列分型

中圖分類號:R378.2" " " " "文獻(xiàn)標(biāo)志碼:A" " " " "文章編號:1001-8751(2023)02-0083-08

Research Progress of Hypervirulent Klebsiella pneumoniae Clinical Infection Features and Virulence Factors

Zhao Hang1,2," "He Zhi-en 2," "Zhang Hui-min1,2," "Cao Jia-xin1,2," "Sun Bao-lin1,2

(1 College of Life Science and Technology, Mudanjiang Normal University," " "Mudanjiang" "157011;"2 Life Sciences and Medicine, University of Science and Technology of China," " Anhui" "230022)

Abstract: Klebsiella pneumoniae is a common Gram-negative opportunistic pathogen that causes a variety of infectious diseases. The emergence of hypervirulent Klebsiella pneumoniae is not only spreads pathogenicity in healthy populations, but also accompanies the metastatic infections, damage to the central nervous system and other hazards. The main virulence factors include Capsular polysaccharides, mobile genetic elements, regulatory genes and siderophores. Hypervirulent Klebsiella pneumoniae has emerged synergistic with drug resistance due to the spread of mobile genetic factors, seriously endangering public safety and health. Therefore, this paper reviews its clinical infection features, virulence factors, and synergism with drug resistance in order to provide reference for subsequent studies.

Key words: Klebsiella pneumoniae;" "hypervirulence;" " virulence factor;" "resistance;" "siderophores;" "multilocus sequence typing

肺炎克雷伯菌(Klebsiella pneumoniae)是一種革蘭陰性條件致病菌,可引起菌血癥、尿路感染和肺炎等嚴(yán)重感染性疾病 [1]。早在2014年,世界衛(wèi)生組織(WHO)發(fā)布的報(bào)告已將肺炎克雷伯菌列為重點(diǎn)監(jiān)測細(xì)菌 [2]。據(jù)2020年我國細(xì)菌耐藥性監(jiān)測網(wǎng)站數(shù)據(jù)統(tǒng)計(jì)顯示,肺炎克雷伯菌臨床分離率占革蘭陰性菌的20.9% [3]。

通?!敖?jīng)典”肺炎克雷伯菌(Classical Klebsiella pneumoniae,cKp)感染多見于醫(yī)院中老年患者、重癥監(jiān)護(hù)病房患者和免疫功能低下患者,在健康人群中不易感染 [4]。相比于cKp,高毒力肺炎克雷伯菌(Hypervirulent Klebsiella pneumoniae,hvKp)自被我國臺灣學(xué)者發(fā)現(xiàn)以來,表現(xiàn)出更強(qiáng)的毒力特征。其不僅可以在健康人群中傳播并引起危及生命的侵襲性感染,如眼內(nèi)炎,化膿性肝膿腫 [5];并且感染期間伴有擴(kuò)散轉(zhuǎn)移的情況,最常見的涉及肺部、眼睛和中樞神經(jīng)系統(tǒng)等 [6];還可以造成原發(fā)性感染,如腦膜炎、脾膿腫、硬膜外膿腫等 [7]。盡管多數(shù)hvKp對抗菌藥物敏感,但近些年來,隨著抗生素大量使用,導(dǎo)致越來越多具有耐藥性的hvKp出現(xiàn),增加了防治難度,嚴(yán)重危害公共健康安全[8]。由于hvKp的嚴(yán)重致病性,許多國家和機(jī)構(gòu)都已經(jīng)將其列為重點(diǎn)監(jiān)測和防治對象。因此,本文將對hvKp的臨床感染與表型特征、毒力相關(guān)因子和耐藥協(xié)同性進(jìn)行綜述,以期為后續(xù)研究提供參考。

1 hvKp的臨床感染與表型特征

1.1 臨床感染特征

自hvKp被報(bào)道以來,在各個國家地區(qū)內(nèi)也出現(xiàn)不同的感染癥狀,盡管大多數(shù)患者為年輕個體且沒有疾病史,然而hvKp引發(fā)的死亡率可達(dá)到42%[9]。此外,即使痊愈的患者,也有可能伴隨著免疫功能受損、視覺喪失、中樞神經(jīng)后遺癥等情況。肺炎克雷伯菌引發(fā)的腦膜炎患者的死亡率大約為8%,并伴隨年齡的增加死亡率也逐步上升,但hvKp感染的腦膜炎在我國流行率持不斷上升的趨勢且感染的腦膜炎患者死亡率高達(dá)77.3%[10]。Serban等[11]研究發(fā)現(xiàn),因hvKp感染的眼內(nèi)炎患者中有75%出現(xiàn)了視力喪失的情況。Sun等[12]研究發(fā)現(xiàn),有81.6%的患者因hvKp而感染化膿性肝膿腫。Yang等[13]研究表明,糖尿病患者因hvKp感染化膿性肝膿腫時,大概率會發(fā)生感染轉(zhuǎn)移的情況,并會導(dǎo)致視覺喪失、神經(jīng)中樞受損(包括腦膜炎、腦膿腫和硬膜外膿腫)。此外,hvKp還會造成皮膚與軟組織的感染,包括壞死性筋膜炎,頸部與腰部的膿腫等。值得注意的是,盡管hvKp多數(shù)為社區(qū)獲得性感染,但是已經(jīng)有報(bào)道稱hvKp通過醫(yī)療器械導(dǎo)致感染,如使用呼吸機(jī)而引起的肺部感染 [14]。hvKp不僅具有較高的致死率,還伴隨著感染轉(zhuǎn)移等情況,但僅憑臨床癥狀無法準(zhǔn)確定義hvKp,因此,還需通過表型特征來進(jìn)一步證明。

1.2 表型特征

一般有以下表型實(shí)驗(yàn)可以用來定義hvKp,包括高黏性表型(拉絲實(shí)驗(yàn)、黏性實(shí)驗(yàn))、大蠟螟感染模型與小鼠致死實(shí)驗(yàn)、血清殺菌實(shí)驗(yàn)、中性粒細(xì)胞殺傷實(shí)驗(yàn)、鐵載體分泌能力等。高黏性表型中拉絲實(shí)驗(yàn)(用接種環(huán)輕挑單菌落若出現(xiàn)≥5 mm的拉絲則為陽性)被認(rèn)為與毒力指標(biāo)密切相關(guān),通過肉眼即可辨別表型,是鑒別hvKp最直觀的表現(xiàn)。黏性實(shí)驗(yàn)則通過低速離心菌液并測定其上清液的吸光值檢測黏稠度[15]。長期以來,高黏性表型代表著高毒性。但根據(jù)一項(xiàng)研究[16],一株對大多數(shù)抗生素敏感的肺炎克雷伯菌分離株,表現(xiàn)出>65 mm的拉絲水平與極高的黏稠度。但未檢測到與黏性相關(guān)基因rmpA/rmpA2,rmpD和rmpC,也未攜帶鐵載體基因簇、毒力質(zhì)粒或整合性結(jié)合元件。此外,攜帶rmpA以及氣桿菌素(Aerobactin)編碼基因的hvKp也有非高黏性表型的情況[17]。據(jù)統(tǒng)計(jì),在hvKp中拉絲實(shí)驗(yàn)陽性從51%至98%不等,在ckp中也有17%至23%表現(xiàn)出拉絲陽性[18]。因此,僅憑高黏性表型并不能代表高毒力水平。大蠟螟體溫可以保持在37 ℃,具有類似于人類先天免疫系統(tǒng)的免疫系統(tǒng),可以提供適合hvKp生存感染的環(huán)境,通過免疫系統(tǒng)抗殺傷能力,其高致死率可定義hvKp [19]。但Russo[20]等研究表明蠟螟感染模型用于區(qū)分ckp和hvKp時,會出現(xiàn)明顯的毒力重疊現(xiàn)象,導(dǎo)致結(jié)果不準(zhǔn)確。而另一種異種小鼠模型的區(qū)分結(jié)果十分準(zhǔn)確,可能是hvKp的毒力因子對小鼠生長存活具有特異性。血清殺菌實(shí)驗(yàn) [21]與中性粒細(xì)胞殺傷實(shí)驗(yàn) [22]則可以體現(xiàn)出hvKp的存活能力和抗殺傷能力。鐵是生命活動不可或缺的元素,在細(xì)胞外,鐵載體幫助肺炎克雷伯菌獲取生長所需的鐵。Heiden等[23]研究中的hvKp分離株都表現(xiàn)出更高的鐵載體分泌水平,平均漂帶直徑為20 mm。另一項(xiàng)研究發(fā)現(xiàn)[18],鐵載體含量≥30 μg/mL也可以更好地預(yù)測菌株是hvKp,并且準(zhǔn)確性≥96%。

除了臨床感染特征與表型特征,還應(yīng)當(dāng)結(jié)合全基因組測序分析毒力基因定義hvKp。目前攜帶iucA、iroB、peg-344、rmpA和rmpA2基因的菌株被定義為hvKp的準(zhǔn)確度較高 [24],將在后續(xù)相關(guān)毒力因子中進(jìn)行具體介紹。

2 hvKp的相關(guān)毒力因子

2.1 莢膜多糖

莢膜多糖(Capsular polysaccharides,CPS)是包裹在細(xì)菌外層的黏性多糖物質(zhì),保護(hù)hvKp免受結(jié)腸黏液中抗菌素的侵襲,并且參與生物膜的形成。目前通過不同的方法鑒定出134種肺炎克雷伯菌的莢膜類型[25]。許多研究表明K1和K2血清型與hvKp之間相關(guān)性最高。Liao等[26]研究中的K1和K2血清型分別占hvKp分離株的54.5%和21.1%。Davoudabadi等 [27]在臨床患者采集到的分離株中發(fā)現(xiàn),hvKp的主要血清型是K2(42.85%),其次是K1(35.71%)。根據(jù)研究顯示,大多數(shù)從菌血癥患者身上分離出的hvKp中有78%屬于K1或K2血清型 [28]。在我國,在與各種侵襲性感染(如化膿性肝膿腫、眼內(nèi)炎)相關(guān)的kvkp分離株中,K2血清型占42.9%,K1血清型占23.8% [29]。Zhao等[30]研究中也發(fā)現(xiàn)68.75%的hvKp分離株與K2血清型相關(guān)。與ckp相比,hvKp會產(chǎn)生更多的莢膜多糖,有學(xué)者將這種現(xiàn)象與調(diào)控高黏性的rmpA和rmpA2基因聯(lián)系起來 [31]。Wakler等 [32]研究證明莢膜多糖的正常產(chǎn)生需要rmpA、rcsB和rmpC的參與;并且存在級聯(lián)反應(yīng),即kvrA、kvrB和rcsB通過調(diào)節(jié)啟動子rmpA和其他機(jī)制來促使莢膜多糖的調(diào)節(jié)。此外,rmpA和rmpC具有重疊和獨(dú)立的功能,這些功能有助于莢膜多糖表達(dá)和高黏性表型的產(chǎn)生。也有研究發(fā)現(xiàn)wza和wzy的敲除不僅會導(dǎo)致莢膜多糖缺失,還會導(dǎo)致細(xì)菌被膜缺陷,表現(xiàn)出對外界環(huán)境敏感的特征。但小鼠實(shí)驗(yàn)表明,盡管莢膜多糖的缺失會影響hvKp在腸道中的初始定植,但是不影響其長期定植 [33]。

2.2 毒力質(zhì)粒

hvKp的毒力與毒力質(zhì)粒的存在密不可分,在以往研究中認(rèn)為毒力質(zhì)粒過大,并不會發(fā)生轉(zhuǎn)移,僅存在hvKp中。pLVPK是hvKp的典型毒力大質(zhì)粒,缺少pLVPK可能會使菌株毒力下降 [34]。根據(jù)Chen等 [35]研究分析,pLVPK質(zhì)粒攜帶的毒力相關(guān)基因是合成莢膜多糖的調(diào)控因子rmpA及其同源物rmpA2,以及多個鐵載體基因簇,包括iucABCD、iutA等;同時還發(fā)現(xiàn)了幾個與金屬抗性相關(guān)的基因簇。Tang等 [36]在研究攜帶pLVPK基因座的hvKp與肝膿腫形成的相關(guān)性中,通過小鼠模型發(fā)現(xiàn),pLVPK的缺失消除了肺炎克雷伯菌傳播到腸外部位的能力,因此減少了小鼠肝膿腫的形成。有研究表明,pLVPK質(zhì)粒至少可以通過四種方式發(fā)生轉(zhuǎn)移:(1)單獨(dú)轉(zhuǎn)移;(2)與IncF質(zhì)粒共轉(zhuǎn)移;(3)在特定的28 bp融合位點(diǎn)重組與IncF質(zhì)粒融合轉(zhuǎn)移;(4)在同源區(qū)重組與IncF質(zhì)粒融合轉(zhuǎn)移 [37]。令人值得注意的是,IncF質(zhì)粒本身就攜帶多種耐藥基因,耐藥和毒力雜交質(zhì)粒的出現(xiàn)變得十分危險。除了毒力質(zhì)粒pLVPK,許多學(xué)者還發(fā)現(xiàn)了其他的毒力質(zhì)粒,它們也同樣表現(xiàn)出耐藥和毒力的雜交融合。Yang等 [38]研究中發(fā)現(xiàn)了攜帶pK2044質(zhì)粒的多重耐藥高毒力肺炎克雷伯菌(Multidrug-resistant hypervirulent Klebsiella pneumoniae,MDR-hvKp)。Shen等 [39]研究發(fā)現(xiàn)一株ST23型的MDR-hvKp,該菌株存在質(zhì)粒p11492-vir-CTXM,其與IncHI1B、IncFIB 、pK2044三個毒力質(zhì)粒具有較高的同源性,但是它攜帶的耐藥基因卻是獨(dú)有。

2.3 毒力基因

rmpA(rmpA2)是一種經(jīng)常在毒力質(zhì)粒或整合染色體元件(ICEKp1)上編碼的轉(zhuǎn)錄調(diào)節(jié)因子,它們被發(fā)現(xiàn)與調(diào)節(jié)高黏性表型密不可分,與引起化膿性肝膿腫有關(guān) [40]。rmpA的缺失會降低莢膜基因的表達(dá)和高黏性,而莢膜和高黏性有助于預(yù)防巨噬細(xì)胞的吞噬。根據(jù)研究發(fā)現(xiàn),高黏性表型似乎是幾種基因之間微調(diào)的關(guān)系;即使在缺乏rmpA的菌株中,rmpC的過表達(dá)也可以補(bǔ)充莢膜基因的表達(dá),rmpC的缺失降低了莢膜基因的表達(dá)但保留了高黏性表型 [33]。且根據(jù)最近的研究中發(fā)現(xiàn)了一種新的調(diào)節(jié)因子rmpD [41],這種調(diào)節(jié)因子是調(diào)節(jié)高黏性表型的關(guān)鍵因素。這表明莢膜和高黏性表型可能是分離開的,高黏性表型不僅僅是莢膜增加的結(jié)果。

magA(黏液黏度相關(guān)基因A)位于與莢膜血清型K1相關(guān)的同一操縱子上,是第一個被描述為導(dǎo)致高黏性黏度表型的基因 [42]。根據(jù)研究表明 [43],magA基因座參與了肺炎克雷伯菌血清型K1的莢膜生成,并且序列分析表明magA共享wzy的保守結(jié)構(gòu)域,即血清型特異性莢膜多糖聚合酶,因此將其改名為wzy_K1。且含有magA的分離株在小鼠模型表現(xiàn)出血清抗性更強(qiáng)以及高致死率。Hunt等 [44]在研究引發(fā)內(nèi)源性眼內(nèi)炎的毒力因素中發(fā)現(xiàn),magA的存在會破壞視網(wǎng)膜功能、生長至高密度、引發(fā)炎癥水平等,表明magA是引發(fā)內(nèi)源性眼內(nèi)炎的毒力因子。Sawada等 [45]研究也發(fā)現(xiàn),免疫功能正常個體因肺炎克雷伯菌感染得內(nèi)源性眼內(nèi)炎,magA為陽性。根據(jù)一項(xiàng)導(dǎo)致化膿性肝膿腫hvKp的流行病學(xué)分析 [46],在hvKp中,magA的檢出率為45.4%。由hvKp感染化膿性肝膿腫常發(fā)生感染轉(zhuǎn)移,當(dāng)感染轉(zhuǎn)移至眼部時,magA進(jìn)而起到了關(guān)鍵作用。此外,在血清型K1的hvKp菌株中發(fā)現(xiàn)magA比在非K1菌株中更普遍,因此可以將magA用作鑒定血清型K1菌株。

peg-344是一種編碼內(nèi)膜上轉(zhuǎn)運(yùn)蛋白的毒力基因,通常被毒力質(zhì)粒攜帶。目前peg-344的功能尚不完全明確,但通過小鼠模型發(fā)現(xiàn)peg-344是hvKp感染肺部的必須毒力因子,但是皮下的感染并不需要peg-344 [47]。Zhou等 [48]在研究血流患者感染的肺炎克雷伯菌中,含有peg-344的菌株無論是在患者致死率還是在表型實(shí)驗(yàn)中都表現(xiàn)出顯著的高毒力。Liao等 [49]使用peg-344環(huán)介導(dǎo)的等溫?cái)U(kuò)增技術(shù)(LAMP)建立了hvKp的快速分子診斷方法,可以準(zhǔn)確區(qū)分ckp和hvKp,并且在血清殺傷實(shí)驗(yàn)和小鼠感染模型中得到了結(jié)果驗(yàn)證。目前已經(jīng)有許多學(xué)者通過檢測毒力基因peg-344來定義hvKp [50-51]。

pks是負(fù)責(zé)編碼大腸桿菌素(Colibactin)的基因,多存于大腸埃希菌中,大腸桿菌素已經(jīng)被證實(shí)可損傷DNA并且增加毒力 [52]。在我國臺灣地區(qū)pks陽性肺炎克雷伯菌分離率為25.6%,并且與導(dǎo)致化膿性肝膿的K1血清型相關(guān)。同時研究發(fā)現(xiàn),pks陽性的肺炎克雷伯菌會導(dǎo)致不同部位的感染如肝膿腫、腦膜炎等,且多出現(xiàn)于K1、K2、K20和K62等血清型中。Lu等 [53]研究發(fā)現(xiàn),pks是hvKp感染腦膜炎的重要毒力因子。Lan等 [54]研究發(fā)現(xiàn)pks陽性肺炎克雷伯菌在血流患者分離率是26.8%。pks基因在全球范圍內(nèi)具有多樣性,在歐洲的肺炎克雷伯菌臨床分離株中發(fā)現(xiàn)相對較少。盡管pks陽性hvKp菌株通常對抗菌藥物敏感,但它們在社區(qū)中較高的流行率和遺傳毒性仍表現(xiàn)出引起疾病的潛在風(fēng)險 [55]。

2.4 鐵載體

肺炎克雷伯菌主要分泌的鐵載體包括氣桿菌素(Aerobactin)、沙門菌素(Salmochelin)、腸桿菌素(Enterobactin)和耶爾森菌素(Yersiniabactin),它們在缺鐵環(huán)境時從外部獲取鐵,例如宿主細(xì)胞中。根據(jù)研究發(fā)現(xiàn),鐵載體除了從外部獲取鐵使肺炎克雷伯菌保持生長,還直接作用于宿主以誘導(dǎo)炎癥細(xì)胞因子(IL-6、CXCL1、CXCL2、HIF-1α)保護(hù)感染并使其傳播至脾臟等部位 [56]。氣桿菌素由iucABCD分別編碼四種攝取酶,iutA編碼轉(zhuǎn)運(yùn)蛋白組成 [57]。研究顯示,在四種鐵載體中,單獨(dú)敲除氣桿菌素可顯著降低hvKp的毒力,氣桿菌素在hvKp鐵獲取中占據(jù)了主導(dǎo)地位,分泌了大量鐵載體;并且氣桿菌素是增強(qiáng)hvKp在人類腹水中生長存活的主要毒力因子。在小鼠模型中,僅抑制氣桿菌素合成,會減弱感染小鼠肺部的毒力 [58]。Shanker等 [59]研究發(fā)現(xiàn),hvKp毒力質(zhì)粒攜帶移碼截短的rmpA,導(dǎo)致無高黏性表型,但都表達(dá)氣桿菌素。通過進(jìn)一步分析,iucA和iutA編碼的蛋白質(zhì)具有較高的穩(wěn)定性和較低的構(gòu)象波動,hvKp可能編碼氣桿菌素將其用作關(guān)鍵毒力因子,減少了rmpA編碼的消耗。沙門菌素由iroA基因座的iroBCDN編碼,可以加快hvKp傳播導(dǎo)致感染擴(kuò)散,從而加重感染 [60]。耶爾森菌素是由ybt、irp1、irp2和fyuA基因編碼,這些基因在染色體上形成耶爾森菌高致病區(qū),是最普遍的毒力相關(guān)基因座,存在30%左右的肺炎克雷伯菌中。耶爾森菌素不僅在感染期間為hvKp提供鐵,還減少了先天免疫系統(tǒng)細(xì)胞的鐵供應(yīng),并且是肺部感染以及呼吸道感染的重要毒力因素 [61-62]。腸桿菌素由ent編碼,而其相應(yīng)的受體由fepA編碼,具有與宿主轉(zhuǎn)鐵蛋白結(jié)合的功能,并對促進(jìn)hvKp定值、生物膜形成、抵抗中性粒細(xì)胞殺傷等有關(guān) [63]。

3 hvKp與多位點(diǎn)序列分型(MLST)的相關(guān)性

在我國,ST11型是最常見的hvKp菌株。但Zhou等[64]研究中hvKp除了ST11型,還發(fā)現(xiàn)ST23、ST86和hvKp相關(guān)。Yu等 [65]研究發(fā)現(xiàn),ST23、ST65、ST86、ST375型和hvKp相關(guān)。Li等[66]研究發(fā)現(xiàn)了ST25型的hvKp,且多數(shù)來自重癥監(jiān)護(hù)病房。除了我國學(xué)者發(fā)現(xiàn)hvKp與不同ST分型有關(guān),國外學(xué)者也有相應(yīng)的發(fā)現(xiàn)。在歐美地區(qū),ST258型是最常見的hvKp菌株[67]。但Peirano等[68]研究發(fā)現(xiàn),新興的ST307型和ST147型和hvKp密切相關(guān),并已經(jīng)在諸多地區(qū)出現(xiàn),包括美國、意大利、哥倫比亞等。Turton等[69]在英國地區(qū)研究的ST23與hvKp相關(guān)。Pajand等 [70]在伊朗地區(qū)研究的ST86與hvKp相關(guān)。hvKp與不同的ST分型密切相關(guān),表明肺炎克雷伯菌具有獲得編碼外源高毒力遺傳元件的特殊能力,可以在不同分型之間廣泛傳播遺傳轉(zhuǎn)座子,從而使ckp衍生出hvKp [71]。

4 hvKp與耐藥性的協(xié)同

在hvKp出現(xiàn)的最初幾十年中,其耐藥性水平非常低,使用廣譜抗生素可以進(jìn)行簡單的治療,但目前已經(jīng)出現(xiàn)了越來越多的MDR-hvKp的報(bào)道[72-73]。MDR-hvKp的產(chǎn)生通過兩種形式:(1)hvKp在傳播轉(zhuǎn)移中獲得耐藥基因或質(zhì)粒形成MDR-hvKp;(2)MDR-ckp獲得毒力質(zhì)粒如pLVPK等形成MDR-hvKp。替加環(huán)素和多粘菌素是治療耐碳青霉烯類高毒力肺炎克雷伯菌(Carbapenem-resistant hypervirulent Klebsiella pneumoniae,CR-hvKp)的最后防線,但在臨床治療過程中也會出現(xiàn)相對的耐藥問題[74-75]。Jin等[76]研究發(fā)現(xiàn),hvKp在使用了替加環(huán)素和多黏菌素B的情況下也定植于胃腸道。Xie等[77]研究發(fā)現(xiàn),血清型K1/K2的hvKp菌株可能首先獲得一個攜帶blaKPC-2質(zhì)粒,然后將與pLVPK樣毒力質(zhì)粒融合以產(chǎn)生雜交融合質(zhì)粒,該融合質(zhì)??梢詡鞑サ椒茄逍蚄1/K2肺炎克雷伯菌,將不存在耐藥性或高毒力的任何肺炎克雷伯菌菌株轉(zhuǎn)化為耐碳青霉烯類的hvKp菌株。

5 小結(jié)與展望

hvKp在我國報(bào)道以來,盡管已有大量的對hvKp的臨床、生理和致病性的研究,但還不夠明確,值得注意的是,hvKp的研究大多集中于流行病學(xué)分析層面,單一方面地定義hvKp過于片面,應(yīng)當(dāng)將臨床感染特征、表型特征和相關(guān)毒力因子進(jìn)行部分結(jié)合定義hvKp。此外,具有耐藥性的hvKp更加值得我們關(guān)注,抗性基因可能會通過質(zhì)粒、插入序列(IS)、轉(zhuǎn)座子(Tn) 、整合子(In)和整合結(jié)合元件(ICE)以復(fù)制或重組的方式導(dǎo)致毒力與耐藥的協(xié)同。例如耐碳青霉烯類高毒力肺炎克雷伯菌和耐β-內(nèi)酰胺類的高毒力肺炎克雷伯菌,這些攜帶不同抗性基因且具有高毒力的菌株已經(jīng)在世界范圍內(nèi)廣泛傳播,引發(fā)嚴(yán)重的公共衛(wèi)生安全危機(jī)。因此,我們應(yīng)加強(qiáng)院內(nèi)的環(huán)境監(jiān)測以及臨床感染的綜合防治,尤其是抗生素的合理使用,防止其進(jìn)一步的傳播。并且hvKp的高毒力決定因素需要進(jìn)一步研究,這些毒力因子不僅有助快速識別hvKp,同時也可能成為開發(fā)新型治療藥物的良好靶點(diǎn)。

參 考 文 獻(xiàn)

Wyres K L, Lam M M C, Holt K E. Population genomics of Klebsiella pneumoniae[J]. Nat Rev Microbiol, 2020, 18(6): 344-359.

Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon[J]. Pathog Glob Health, 2015, 109(7): 309-318.

全國細(xì)菌耐藥監(jiān)測網(wǎng). 2020年全國細(xì)菌耐藥監(jiān)測報(bào)告[J]. 中華檢驗(yàn)醫(yī)學(xué)雜志, 2022, 45(02): 122-136.

Martin R M, Bachman M A. Colonization, nfection, and the accessory genome of Klebsiella pneumoniae[J]. Front Cell Infect Microbiol, 2018, 8: 4.

Qian Y, Wong C C, Lai S C, et al. Klebsiella pneumoniae invasive liver abscess syndrome with purulent meningitis and septic shock: A case from mainland China[J]. World J Gastroenterol, 2016, 22(9): 2861-2866.

Russo T A, Marr C M. Hypervirulent Klebsiella pneumoniae[J]. Clin Microbiol Rev, 2019, 32(3):e00001-19..

Siu L K, Yeh K M, Lin J C, et al. Klebsiella pneumoniae liver abscess: a new invasive syndrome[J]. Lancet Infect Dis, 2012, 12(11): 881-887.

Wyres K L, Holt K E. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria[J]. Curr Opin Microbiol, 2018, 45: 131-139.

Shon A S, Bajwa R P, Russo T A. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed[J]. Virulence, 2013, 4(2): 107-118.

Xu M, Fu Y, Fang Y, et al. High prevalence of KPC-2-producing hypervirulent Klebsiella pneumoniae causing meningitis in Eastern China[J]. Infect Drug Resist, 2019, 12: 641-653.

Serban D, Popa Cherecheanu A, Dascalu A M, et al. Hypervirulent Klebsiella pneumoniae endogenous endophthalmitis-A global emerging disease[J]. Life (Basel), 2021, 11(7): 676.

Sun Y, Wu H, Shen D. Clinical and Molecular Analysis of Klebsiella pneumoniae Causing Liver Abscess in China[J]. J Mol Microbiol Biotechnol, 2016, 26(4): 245-251.

Yang C S, Tsai H Y, Sung C S, et al. Endogenous Klebsiella endophthalmitis associated with pyogenic liver abscess[J]. Ophthalmology, 2007, 114(5): 876-880.

Choby J E, Howard-Anderson J, Weiss D S. Hypervirulent Klebsiella pneumoniae - clinical and molecular perspectives[J]. J Intern Med, 2020, 287(3): 283-300.

Park S, Lee H, Shin D, et al. Change of hypermucoviscosity in the development of tigecycline resistance in hypervirulent Klebsiella pneumoniae sequence type 23 strains[J]. Microorganisms, 2020, 8(10): 1562.

Dey T, Chakrabortty A, Kapoor A, et al. Unusual hypermucoviscous clinical isolate of Klebsiella pneumoniae with no known determinants of hypermucoviscosity[J]. Microbiol Spectr, 2022, 10(3): e0039322.

Catalan-Najera J C, Garza-Ramos U, Barrios-Camacho H. Hypervirulence and hypermucoviscosity: Two different but complementary Klebsiella spp. phenotypes?[J]. Virulence, 2017, 8(7): 1111-1123.

Russo T A, Olson R, Fang C T, et al. Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae[J]. J Clin Microbiol, 2018, 56(9):e00776-18.

Cools F, Torfs E, Aizawa J, et al. Optimization and characterization of a galleria mellonella larval infection model for virulence studies and the evaluation of therapeutics against Streptococcus pneumoniae[J]. Front Microbiol, 2019, 10: 311.

Russo T A, MacDonald U. The galleria mellonella infection model does not accurately differentiate between hypervirulent and classical Klebsiella pneumoniae[J]. M Sphere, 2020, 5(1): e00850-19.

Sahly H, Aucken H, Benedi V J, et al. Increased serum resistance in Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases[J]. Antimicrob Agents Chemother, 2004, 48(9): 3477-3482.

van Grinsven E, Leliefeld P H C, Pillay J, et al. A comprehensive three-dimensional assay to assess neutrophil defense against bacteria[J]. J Immunol Methods, 2018, 462: 83-90.

Heiden S E, Hubner N O, Bohnert J A, et al. A Klebsiella pneumoniae ST307 outbreak clone from Germany demonstrates features of extensive drug resistance, hypermucoviscosity, and enhanced iron acquisition[J]. Genome Med, 2020, 12(1): 113.

Russo T A, MacDonald U, Hassan S, et al. An assessment of siderophore production, mucoviscosity, and mouse infection models for defining the virulence spectrum of hypervirulent Klebsiella pneumoniae[J]. mSphere, 2021, 6(2):e00045-21.

Palacios M, Miner T A, Frederick D R, et al. Identification of two regulators of virulence that are conserved in Klebsiella pneumoniae classical and hypervirulent strains[J]. M Bio, 2018, 9(4):e01443-18.

Liao W, Li D, Liu F, et al. Distribution of integrons and phylogenetic groups among highly virulent serotypes of Klebsiella pneumoniae in a Chinese tertiary hospital[J]. J Glob Antimicrob Resist, 2020, 21: 278-284.

Davoudabadi S, Goudarzi H, Goudarzi M, et al. Detection of extensively drug-resistant and hypervirulent Klebsiella pneumoniae ST15, ST147, ST377 and ST442 in Iran[J]. Acta Microbiol Immunol Hung, 2021: 69(1): 77-86.

Jung S W, Chae H J, Park Y J, et al. Microbiological and clinical characteristics of bacteraemia caused by the hypermucoviscosity phenotype of Klebsiella pneumoniae in Korea[J]. Epidemiol Infect, 2013, 141(2): 334-340.

Guo Y, Wang S, Zhan L, et al. Microbiological and clinical characteristics of hypermucoviscous Klebsiella pneumoniae isolates associated with invasive infections in China[J]. Front Cell Infect Microbiol, 2017, 7: 24.

Zhao J, Chen J, Zhao M, et al. Multilocus sequence types and virulence determinants of hypermucoviscosity-positive Klebsiella pneumoniae isolated from community-acquired infection cases in Harbin, North China[J]. Jpn J Infect Dis, 2016, 69(5): 357-360.

Hsu C R, Lin T L, Chen Y C, et al. The role of Klebsiella pneumoniae rmpA in capsular polysaccharide synthesis and virulence revisited[J]. Microbiology (Reading), 2011, 157(Pt 12): 3446-3457.

Walker K A, Miner T A, Palacios M, et al. A Klebsiella pneumoniae regulatory mutant has reduced capsule expression but retains hypermucoviscosity[J]. mBio, 2019, 10(2):e00089-19.

Tan Y H, Chen Y, Chu W H W, et al. Cell envelope defects of different capsule-1 mutants in K1 hypervirulent Klebsiella pneumoniae can affect bacterial pathogenesis[J]. Mol Microbiol, 2020, 113(5): 889-905.

Du F L, Huang Q S, Wei D D, et al. Prevalence of carbapenem-resistant Klebsiella pneumoniae co-harboring blaKPC-carrying plasmid and pLVPK-Like virulence plasmid in bloodstream infections[J]. Front Cell Infect Microbiol, 2020, 10: 556654.

Chen Y T, Chang H Y, Lai Y C, et al. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43[J]. Gene, 2004, 337: 189-198.

Tang H L, Chiang M K, Liou W J, et al. Correlation between Klebsiella pneumoniae carrying pLVPK-derived loci and abscess formation[J]. Eur J Clin Microbiol Infect Dis, 2010, 29(6): 689-698.

Xu Y, Zhang J, Wang M, et al. Mobilization of the nonconjugative virulence plasmid from hypervirulent Klebsiella pneumoniae[J]. Genome Med, 2021, 13(1): 119.

Yang Y, Li X, Zhang Y, et al. Characterization of a hypervirulent multidrug-resistant ST23 Klebsiella pneumoniae carrying a blaCTX-M-24 IncFII plasmid and a pK2044-like plasmid[J]. J Glob Antimicrob Resist, 2020, 22: 674-679.

Shen D, Ma G, Li C, et al. Emergence of a multidrug-resistant hypervirulent Klebsiella pneumoniae sequence type 23 strain with a rare blaCTX-M-24 -harboring virulence plasmid[J]. Antimicrob Agents Chemother, 2019, 63(3):e02273-18.

Lin T L, Lee C Z, Hsieh P F, et al. Characterization of integrative and conjugative element ICEKp1-associated genomic heterogeneity in a Klebsiella pneumoniae strain isolated from a primary liver abscess[J]. J Bacteriol, 2008, 190(2): 515-526.

Walker K A, Treat L P, Sepulveda V E, et al. The small protein RmpD drives hypermucoviscosity in Klebsiella pneumoniae[J]. mBio, 2020, 11(5):e01750-20.

Chou A, Nuila R E, Franco L M, et al. Prevalence of hypervirulent Klebsiella pneumoniae-associated genes rmpA and magA in two tertiary hospitals in Houston, TX, USA[J]. J Med Microbiol, 2016, 65(9): 1047-1048.

Lin T L, Yang F L, Yang A S, et al. Amino acid substitutions of MagA in Klebsiella pneumoniae affect the biosynthesis of the capsular polysaccharide[J]. PLoS One, 2012, 7(10): e46783.

Hunt J J, Wang J T, Callegan M C. Contribution of mucoviscosity-associated gene A (magA) to virulence in experimental Klebsiella pneumoniae endophthalmitis[J]. Invest Ophthalmol Vis Sci, 2011, 52(9): 6860-6866.

Sawada A, Komori S, Udo K, et al. Case of endogenous endophthalmitis caused by Klebsiella pneumoniae with magA and rmpA genes in an immunocompetent patient[J]. J Infect Chemother, 2013, 19(2): 326-329.

Zhang S, Zhang X, Wu Q, et al. Clinical, microbiological, and molecular epidemiological characteristics of Klebsiella pneumoniae-induced pyogenic liver abscess in southeastern China[J]. Antimicrob Resist Infect Control, 2019, 8: 166.

Bulger J, MacDonald U, Olson R, et al. Metabolite transporter PEG344 is required for full virulence of hypervirulent Klebsiella pneumoniae strain hvKP1 after pulmonary but not subcutaneous challenge[J]. Infect Immun, 2017, 85(10):e00093-17.

Zhou K, Xiao T, David S, et al. Novel subclone of carbapenem-resistant Klebsiella pneumoniae sequence type 11 with enhanced virulence and transmissibility, China[J]. Emerg Infect Dis, 2020, 26(2): 289-297.

Liao W, Long D, Huang Q, et al. Rapid detection to differentiate hypervirulent Klebsiella pneumoniae (hvKp) from classical K. pneumoniae by identifying peg-344 with loop-mediated isothermal amplication (LAMP)[J]. Front Microbiol, 2020, 11: 1189.

Kakuta N, Nakano R, Nakano A, et al. Molecular characteristics of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in Japan: Predominance of CTX-M-15 and emergence of hypervirulent clones[J]. Int J Infect Dis, 2020, 98: 281-286.

Lazareva I, Ageevets V, Sopova J, et al. The emergence of hypervirulent blaNDM-1-positive Klebsiella pneumoniae sequence type 395 in an oncology hospital[J]. Infect Genet Evol, 2020, 85: 104527.

Fais T, Delmas J, Barnich N, et al. Colibactin: more than a new bacterial toxin[J]. Toxins (Basel), 2018, 10(4):151.

Lu M C, Chen Y T, Chiang M K, et al. Colibactin contributes to the hypervirulence of pks(+) K1 CC23 Klebsiella pneumoniae in mouse meningitis infections[J]. Front Cell Infect Microbiol, 2017, 7: 103.

Lan Y, Zhou M, Jian Z, et al. Prevalence of pks gene cluster and characteristics of Klebsiella pneumoniae-induced bloodstream infections[J]. J Clin Lab Anal, 2019, 33(4): e22838.

Shi Q, Quan J, Lan P, et al. Prevalence and characteristics of pks gene cluster harbouring Klebsiella pneumoniae from bloodstream infection in China[J]. Epidemiol Infect, 2020, 148: e69.

Holden V I, Breen P, Houle S, et al. Klebsiella pneumoniae siderophores induce inflammation, bacterial dissemination, and HIF-1alpha stabilization during pneumonia[J]. mBio, 2016, 7(5): e01397-16.

Bailey D C, Alexander E, Rice M R, et al. Structural and functional delineation of aerobactin biosynthesis in hypervirulent Klebsiella pneumoniae[J]. J Biol Chem, 2018, 293(20): 7841-7852.

Russo T A, Olson R, MacDonald U, et al. Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo[J]. Infect Immun, 2015, 83(8): 3325-3333.

Shankar C, Basu S, Lal B, et al. Aerobactin seems to be a promising marker compared with unstable rmpA2 for the identification of hypervirulent carbapenem-resistant Klebsiella pneumoniae: in silico and in vitro evidence[J]. Front Cell Infect Microbiol, 2021, 11: 709681.

Muller S I, Valdebenito M, Hantke K. Salmochelin, the long-overlooked catecholate siderophore of Salmonella[J]. Biometals, 2009, 22(4): 691-695.

Paauw A, Leverstein-van Hall M A, van Kessel K P, et al. Yersiniabactin reduces the respiratory oxidative stress response of innate immune cells[J]. PLoS One, 2009, 4(12): e8240.

Bachman M A, Oyler J E, Burns S H, et al. Klebsiella pneumoniae yersiniabactin promotes respiratory tract infection through evasion of lipocalin 2[J]. Infect Immun, 2011, 79(8): 3309-3316.

Saha P, Yeoh B S, Xiao X, et al. Enterobactin induces the chemokine, interleukin-8, from intestinal epithelia by chelating intracellular iron[J]. Gut Microbes, 2020, 12(1): 1-18.

Zhou C, Wu Q, He L, et al. Clinical and molecular characteristics of carbapenem-resistant hypervirulent Klebsiella pneumoniae isolates in a tertiary hospital in Shanghai, China[J]. Infect Drug Resist, 2021, 14: 2697-2706.

Yu F, Lv J, Niu S, et al. Multiplex PCR analysis for rapid detection of Klebsiella pneumoniae carbapenem-resistant (sequence type 258 [ST258] and ST11) and hypervirulent (ST23, ST65, ST86, and ST375) strains[J]. J Clin Microbiol, 2018, 56(9):e00731-18.

Li J, Huang Z Y, Yu T, et al. Isolation and characterization of a sequence type 25 carbapenem-resistant hypervirulent Klebsiella pneumoniae from the mid-south region of China[J]. BMC Microbiol, 2019, 19(1): 219.

Marsh J W, Mustapha M M, Griffith M P, et al. Evolution of outbreak-causing carbapenem-resistant Klebsiella pneumoniae ST258 at a tertiary care hospital over 8 years[J]. mBio, 2019, 10(5):e01945-19.

Peirano G, Chen L, Kreiswirth B N, et al. Emerging antimicrobial-resistant high-risk Klebsiella pneumoniae clones ST307 and ST147[J]. Antimicrob Agents Chemother, 2020, 64(10):e01148-20.

Turton J F, Payne Z, Coward A, et al. Virulence genes in isolates of Klebsiella pneumoniae from the UK during 2016, including among carbapenemase gene-positive hypervirulent K1-ST23 and ‘non-hypervirulent’ types ST147, ST15 and ST383[J]. J Med Microbiol, 2018, 67(1): 118-128.

Pajand O, Darabi N, Arab M, et al. The emergence of the hypervirulent Klebsiella pneumoniae (hvKp) strains among circulating clonal complex 147 (CC147) harbouring blaNDM/OXA-48 carbapenemases in a tertiary care center of Iran[J]. Ann Clin Microbiol Antimicrob, 2020, 19(1): 12.

Chen R, Liu Z, Xu P, et al. Deciphering the epidemiological characteristics and molecular features of blaKPC-2- or blaNDM-1-Positive Klebsiella pneumoniae isolates in a newly established hospital[J]. Front Microbiol, 2021, 12: 741093.

Hao M, Shi X, Lv J, et al. In vitro activity of apramycin against carbapenem-resistant and hypervirulent Klebsiella pneumoniae isolates[J]. Front Microbiol, 2020, 11: 425.

Shankar C, Jacob J J, Vasudevan K, et al. Emergence of multidrug resistant hypervirulent ST23 Klebsiella pneumoniae: multidrug resistant plasmid acquisition drives evolution[J]. Front Cell Infect Microbiol, 2020, 10: 575289.

Durante-Mangoni E, Andini R, Zampino R. Management of carbapenem-resistant Enterobacteriaceae infections[J]. Clin Microbiol Infect, 2019, 25(8): 943-950.

Medeiros G S, Rigatto M H, Falci D R, et al. Combination therapy with polymyxin B for carbapenemase-producing Klebsiella pneumoniae bloodstream infection[J]. Int J Antimicrob Agents, 2019, 53(2): 152-157.

Jin X, Chen Q, Shen F, et al. Resistance evolution of hypervirulent carbapenem-resistant Klebsiella pneumoniae ST11 during treatment with tigecycline and polymyxin[J]. Emerg Microbes Infect, 2021, 10(1): 1129-1136.

Xie M, Yang X, Xu Q, et al. Clinical evolution of ST11 carbapenem resistant and hypervirulent Klebsiella pneumoniae[J]. Commun Biol, 2021, 4(1): 650.

主站蜘蛛池模板: 欧美无专区| 2020国产在线视精品在| 精品国产www| 伊人国产无码高清视频| 亚洲第一成年人网站| 亚洲女人在线| 一本色道久久88综合日韩精品| 99久久精品国产综合婷婷| 亚亚洲乱码一二三四区| 小说 亚洲 无码 精品| 欧美一区二区精品久久久| 国产欧美日韩va| 55夜色66夜色国产精品视频| 国产国产人成免费视频77777| 精品91在线| 久草青青在线视频| 国产无码网站在线观看| 日韩精品无码免费一区二区三区 | 国产手机在线ΑⅤ片无码观看| 欧美激情首页| 在线看AV天堂| 欧美成人午夜视频| 色爽网免费视频| 国产精品永久免费嫩草研究院| 亚洲精品少妇熟女| 国产一级毛片yw| 五月激情综合网| 好吊色妇女免费视频免费| a亚洲视频| 狠狠五月天中文字幕| 美臀人妻中出中文字幕在线| 亚洲欧美日韩中文字幕在线| 久爱午夜精品免费视频| 国产人在线成免费视频| 欧美精品啪啪一区二区三区| 99热线精品大全在线观看| 国产网友愉拍精品| 久久一日本道色综合久久| 国产真实乱了在线播放| 亚洲人成成无码网WWW| 亚洲精品在线观看91| 2019年国产精品自拍不卡| 精品无码一区二区三区在线视频| 天天躁狠狠躁| 亚洲色图欧美| 日韩精品亚洲精品第一页| 国产肉感大码AV无码| 欧美爱爱网| 永久成人无码激情视频免费| 亚洲二三区| 在线免费看黄的网站| 国产视频 第一页| 亚洲精品另类| 秋霞国产在线| 国产在线视频福利资源站| 亚洲日韩AV无码精品| 97色伦色在线综合视频| www.狠狠| 99久久亚洲综合精品TS| 亚洲成a人片在线观看88| 亚洲男人在线天堂| 特级精品毛片免费观看| 97狠狠操| 国产成人区在线观看视频| 伊人久热这里只有精品视频99| 久久午夜夜伦鲁鲁片不卡| 永久成人无码激情视频免费| 色悠久久久久久久综合网伊人| 中日无码在线观看| 四虎影视永久在线精品| 999精品视频在线| 久久综合伊人77777| 1级黄色毛片| 日韩中文无码av超清| 国产精品蜜芽在线观看| 色综合天天综合| 精品国产Av电影无码久久久| 亚洲天堂网在线观看视频| 亚洲看片网| 亚洲精品va| 国产精鲁鲁网在线视频| 青青草一区二区免费精品|