申月



摘 要:借助《函數的零點與方程的解》這一高中數學概念課的教學實踐過程,從深度學習的必要性,深度學習的課堂實踐以及深度學習的教學啟示等方面展開,闡述深度學習下概念課的教學模式,引領并指導數學教學與學習.
關鍵詞:深度學習;函數;零點;方程;概念
深度學習是機器學習的一種,是實現人工智能的必經路徑,是一個源于人工神經網絡的研究的概念.課堂教學中,借助合理的深度學習,全面構建數學學習共同體,是提升課堂教學效果的一個重要途徑.特別在概念教學過程中,深度學習顯得更為重要.
1 深度學習的必要性
1.1 探究概念的來龍去脈
借助深度學習,合理挖掘概念的根源,培養學生對知識探究的濃厚興趣和探究欲望.學生自主對數學概念進行探究,進而理清概念發展的脈絡,構建與之相關的概念體系與數學知識體系,對知識的學習與體系的構建很有幫助.
1.2 促進知識的深層理解
借助深度學習,在對概念的淺層次理解的基礎上,學生可以通過對概念等知識的批判性的理解與接收,合理內化,將其融入自身已有的知識系統中去,合理實現新知與舊知的鏈接,從而促進學生對知識的理解與應用,為知識的遷移與學習拓展更加廣闊的空間.
1.3 注重知識的交匯融合
借助深度學習,在相關概念初步學習的基礎上,進一步加深其與已知知識的聯系與關聯,構建起不同知識之間的交匯與融合,有助于學生延伸知識的枝蔓,強化新知識的內化及其與原有知識之間的聯系,形成一個良好的認知結構.
1.4 養成良好的核心素養
借助深度學習,在概念等相關知識理解與掌握的基礎上,融入數據分析、數學抽象、邏輯推理、數學建模、直觀想象以及數學運算等核心素養,學生更能批判性地學習新思想和新知識,并將其巧妙融入到已有的認知與知識體系中去,形成對知識的更深層次的理解,提高學生的思維品質和數學學習能力.
2 深度學習的課堂實踐
2.1 導學聚焦
理清學習目標與考點,對應相應的核心素養,為概念教學確立了明確的目標與理念,學生圍繞這些基本目標來學習.
2.2 問題導學
預習教材(人民教育出版社2019年國家教材委員會專家委員會審核通過的《數學》(必修第一冊))第四章《指數函數與對數函數》中4.5函數的應用(二)P142-P144,并思考以下問題:
(1) 函數零點的概念是什么?
(2) 如何判斷函數的零點?
(3) 方程的根、函數的圖象與x軸的交點、函數的零點三者之間的聯系是什么?
強調自主學習,也為深度學習提供條件與過渡.在學生自主學習的基礎上,教師通過課堂中的概念教學加以深入,全面提升深度學習的效果.
2.3 概念形成
(1) 概念:對于一般函數f(x),我們把使f(x)=0的實數x叫做函數y=f(x)的零點.
(2) 方程f(x)=0的根、函數f(x)的圖象與x軸的交點、函數f(x)的零點三者之間的聯系見圖1.
問題1:函數的零點是點嗎?
提示:函數的零點不是一個點,而是一個實數,當自變量取該值時,其函數值等于零.
問題2:函數的零點個數、函數的圖象與x軸的交點個數、方程f(x)=0根的個數有什么關系?
提示:相等.
問題3:結合前面所學的一次函數、二次函數、反比例函數、冪函數、指數函數以及對數函數等相關基本初等函數,思考這些函數是否有零點?并說明理由.
提示:不一定.因為函數的零點其實就是對應方程的根,但不是所有的方程都有根,所以說不是所有的函數都有零點.也可以通過函數的圖象與x軸的交點即是對應函數的零點來判斷(這里可以結合實例來分析,如反比例函數或指數函數).
不停留在概念的表層,通過提出問題,反饋信息,深度理解并掌握相關概念的深層次的內涵與實質,也是深度學習的一個層面.
規律方法總結:根據函數的零點(方程的根)情況求解相關參數的取值范圍的方法:① 直接法:直接構建相應的不等式,通過含參不等式的求解來確定;② 分離參數法:合理分離參數,利用另一邊函數所對應的值域情況來分析與解決;③ 數形結合法:結合函數圖象加以直觀分析,數形結合處理.
借助零點的應用,多視角多層面地展開,幫助學生有效應用函數的零點概念與函數零點存在定理,也為學生對具體問題的分析與求解提供了條件,進一步總結規律方法,以達到深度學習的目的.
3 深度學習的教學啟示
3.1 把握學情,合理設計
數學深度學習具有本源性、聯系性、整合性和建構性等基本特征.在實際數學相關概念的教學過程中,教師要充分挖掘數學概念及其對應的課程資源,調動學生的主體性并合理把握學生的實際情況,巧妙設計深度學習的課堂教學實踐過程.除此之外,教師還要充分考慮并兼顧概念教學與學生學情兩者之間的吻合度,借助合理設計,形成巧妙鏈接,自然過渡,真正把數學概念落到實處,真正推進數學深度教學,形成學生的有效深度學習.
3.2 緩慢推進,逐步提升
借助數學概念的教學與學習,結合解題研究,從數學概念的淺顯理解走向深刻掌握,并借助實例應用,形成學生概念學習的逐漸上升與螺旋前進的過程,是數學教學與解題研究中追求的一種理想狀態,需要師生不斷交流、反饋與改進,才能幫助學生形成良好的深度學習,培養良好的數學學習習慣,提升數學能力.
借助深度學習,通過數學概念教學,緩慢推進教學流程,逐步完善與概念相關的數學知識體系,有利于幫助學生形成良好的認知結構,逐步實現數學學習從“概念”到“知識”再到“應用”的過渡,做到“學會”到“會學”,并不斷過渡到“會用”的數學學習新境界與新階段,形成數學能力,提升數學品質,發展核心素養.
參考文獻:
[1] 韓文美.高考數學試題的題源探秘[J].高中生之友,2018(11):21-22.
[2] 中華人民共和國教育部.普通高中數學課程標準(2017年版)[S].北京:人民教育出版社,2018.