張金武 謝丁玲 陳莉



摘要:目的 基于Toll樣受體4(TLR4)/核轉錄因子-κB(NF-κB)通路,探討一葉萩堿(SE)對大鼠腦缺血再灌注損傷(CIRI)后神經功能的影響及相關機制。方法 100只成年SD大鼠隨機分為假手術組(Sham組),模型組(CIRI組),SE低、中、高劑量組,每組20只。采用線栓法建立大鼠CIRI模型,建模成功后立即腹腔注射低、中、高劑量(20 mg/kg、40 mg/kg、80 mg/kg)的SE,連續3 d,Sham組與CIRI組給予等量生理鹽水。術后24、48、72 h,參照Longa法對各組大鼠進行神經功能缺損評分;術后72 h,干濕重法測定大鼠腦組織含水量,2,3,5-氯化三苯基四氮唑(TTC)染色評估大鼠腦梗死體積百分比,Western blot檢測大鼠腦組織離子鈣結合銜接分子1(Iba-1)、TLR4、NF-κB p65和p-NF-κB p65蛋白表達,酶聯免疫吸附試驗(ELISA)檢測大鼠腦組織白細胞介素(IL)-1β、腫瘤壞死因子-α(TNF-α)和IL-6水平,免疫熒光染色檢測小膠質細胞活化和神經元存活情況。結果 與Sham組相比,CIRI組大鼠神經功能缺損評分、腦組織含水量升高,腦梗死體積百分比增大,腦組織中TLR4、p-NF-κB p65、Iba-1、IL-1β、TNF-α和IL-6表達水平升高(P<0.05)。中、高劑量的SE可降低大鼠CIRI后神經功能缺損評分和損傷后腦組織含水量,降低腦梗死體積百分比及損傷區域TLR4、p-NF-κB p65、Iba-1蛋白表達水平及IL-1β、TNF-α和IL-6水平(P<0.05)。結論 SE可通過抑制TLR4/NF-κB通路激活降低大鼠CIRI后神經炎癥反應,發揮腦保護作用。
關鍵詞:腦缺血;再灌注損傷;TLR4/NF-κB通路;一葉萩堿;炎性因子
中圖分類號:R743.3文獻標志碼:ADOI:10.11958/20221801
The effect of securinine on neurological function recovery after cerebral ischemia-reperfusion injury in rats
ZHANG Jinwu, XIE Dingling, CHEN Li
Department of Neurology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, China
Corresponding Author E-mail: easy1851@eyou.com
Abstract: Objective To explore the effect and mechanism of securinine (SE) on cerebral ischemia reperfusion injury (CIRI) in rats based on toll-like receptor 4 (TLR4)/nuclear transcription factor-kappa B (NF-κB) pathway. Methods A total of 100 male or female adult SD rats were randomly divided into the sham group, the CIRI group and the SE low-, medium- and high-dose (20 mg/kg, 40 mg/kg, 80 mg/kg) groups, with 20 rats in each group. The rat model of CIRI was established by thread occlusion. Rats were treated with SE (20 mg/kg, 40 mg/kg and 80 mg/kg) immediately after successful modeling for 3 consecutive days. Rats in the sham group and the CIRI group were given the same amount of normal saline. At 24 h, 48 h and 72 h after operation, the neurological deficits of rats were measured according to Longa score. At 72 h after operation, brain tissue water content was evaluated by wet-dry weight method, and the percentage of cerebral infarction volume was assessed by triphenyltetrazolium chloride (TTC) staining. Protein expression levels of Iba-1,TLR4, NF-κB p65 and p-NF-κB p65 in brain tissue were determined by Western blot assay. Expression levels of inflammatory factors such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 were detected by enzyme-linked immunosorbent assay (ELISA). Level of microglia activation and the number of surviving neurons were examined by immunofluorescence staining. Results Compared with the sham group, neurological function scores, brain tissue water content and the percentage of cerebral infarction volume were significantly increased in the CIRI group (all P<0.05). Expression levels of TLR4, p-NF-κB p65, Iba-1, IL-1β, TNF-α and IL-6 in brain tissue were significantly increased (all P<0.05). However, medium- and high-doses of SE could significantly alleviate the neurological deficits, reduce the water content of brain tissue and the size of cerebral infarction volume, decrease expression levels of TLR4, p-NF-κB p65, Iba-1, IL-1β, TNF-α and IL-6 in the injured area of brain tissue in rats. Conclusion SE can alleviate CIRI-induced neuroinflammatory response via inhibiting TLR4/NF-κB pathway activation, thereby conferring a protective role in brain of rats.
Key words: brain ischemia; reperfusion injury; TLR4/NF-κB pathway; securinine; inflammatory factors
缺血性腦卒中是一種嚴重的急性腦血管疾病,具有高發病率、高致殘率和高死亡率等特點[1]。早期恢復局部腦血流量是治療腦卒中的關鍵,然而腦血管再通后可能進一步誘發腦組織損傷和加重神經功能缺損,即腦缺血再灌注損傷(cerebral ischemia reperfusion injury,CIRI)[2]。CIRI的損傷機制錯綜復雜,主要涉及離子失衡、血腦屏障(BBB)損傷、能量代謝障礙、興奮性氨基酸細胞毒性、炎癥反應和氧化應激等多個病理過程,其中炎癥反應是CIRI發生發展的重要病理機制[3]。大量研究顯示,減輕大鼠炎癥反應可以改善CIRI后的神經功能[4-5]。因此,抑制CIRI后炎癥反應的激活,減少促炎因子的釋放,對改善腦損傷具有顯著的意義。一葉萩堿(securinine,SE)又名一葉堿,是一種從植物根部提取的生物堿[6],已經證實SE可以特異性拮抗γ-氨基丁酸(GABA)A受體的活性,因此被廣泛應用于中樞神經系統疾病的治療,如肌萎縮側索硬化癥[7]、小兒麻痹癥[8]和多發性硬化癥[9]。近年來,體內外相關研究發現,SE在帕金森病(Parkinson's disease,PD)中發揮著顯著的抗炎和神經保護作用[10-11]。然而有關SE在CIRI中應用的研究尚鮮見報道。基于此,本研究旨在探討SE對大鼠CIRI后神經功能的影響及其可能的作用機制。
1 材料與方法
1.1 材料
1.1.1 實驗動物 2月齡清潔級成年SD大鼠100只,雌雄各半,體質量(200±20)g,購自遼寧長生生物技術股份有限公司,動物生產許可證號:SCXK(遼)2020-0001。所有動物飼養于溫度(22±2)℃,濕度50%±20%,自由飲水和攝食,12 h晝夜規律交替的動物房中。本研究所有動物實驗均遵循“國家實驗動物護理和使用健康研究所指南”(NIH出版物No.80-23)進行,并獲得湖北科技學院動物倫理委員會批準(編號:2020-01-900)。
1.1.2 主要試劑與儀器 線栓(北京西濃科技有限公司),SE(純度>98%,中國源葉生物科技有限公司),離子鈣結合銜接分子1(Iba-1)、Toll樣受體4(TLR4,美國Santa Cruz公司),核轉錄因子-κB(NF-κB)p65/p-p65、β-actin、辣根過氧化物酶(HRP)標記山羊抗兔/鼠IgG H&L(沈陽萬類生物科技有限公司),Neuron(美國Millipore公司),熒光二抗兔/鼠(美國ThermoFisfer Scientific公司),大鼠白細胞介素(IL)-1β、腫瘤壞死因子-α(TNF-α)和IL-6酶聯免疫吸附試驗(ELISA)試劑盒(上海酶聯生物科技有限公司),PVDF膜(0.45 ?m,美國Millipore公司),RIPA裂解液、BCA蛋白定量試劑盒、Western blot制膠試劑盒(上海碧云天生物科技有限公司),標準蛋白Maker(上海雅酶生物醫藥科技有限公司),超敏ECL發光試劑盒(沈陽萬類生物科技有限公司)。2,3,5-氯化三苯基四氮唑(TTC,美國Sigma公司),超敏ECL化學發光試劑盒(北京biosharp公司),蛋白電泳儀、轉膜裝置(美國Bio-Rad公司)。
1.2 方法
1.2.1 動物模型構建 100只大鼠適應性飼養1周后,采用隨機數字表法分為假手術組(Sham組),模型組(CIRI組),SE低、中、高劑量組,每組20只。參照改良的Zea-Longa[12]線栓法建立大鼠CIRI模型。過程如下:腹腔注射2%戊巴比妥鈉(30 mg/kg)麻醉,滿意后,頸部剃毛,皮膚碘伏消毒,沿正中偏右切口分離暴露右頸總、頸內和頸外動脈,結扎右頸總和頸外動脈近心端,頸總動脈頭側端剪口,將線栓從頸內動脈輕柔推至大鼠大腦前動脈,進線長度約20 mm,固定后縫合。線栓阻斷2 h后抽出絲線,切口絲線結扎。Sham組僅分離血管,不進行剪口和線栓操作。SE低、中、高劑量組于造模成功后立即腹腔分別注射20、40、80 mg/kg SE,持續3 d。造模成功標志為麻醉清醒后,大鼠提尾時左側前肢不能前伸,爬行時向患側偏斜,不能走直線。造模不成功或未到相應時間死亡者被剔除,并按照隨機原則及時補充。Sham組與CIRI組腹腔注射等體積的生理鹽水。
1.2.2 神經功能缺損評分 術后24、48、72 h,每組隨機抽取8只大鼠,由單盲觀察者參照Longa評分法進行神經功能缺損評分:0分,無神經功能缺損;1分,輕度神經功能缺損,梗死半球對側前爪不能完全伸展;2分,中度神經功能缺損,行走時向梗死半球側轉圈;3分,嚴重神經功能缺損,行走時向梗死半球側傾倒;4分,無法自發行走,刺激無反應,存在意識喪失。
1.2.3 TTC染色檢測大鼠腦梗死體積百分比 術后72 h,每組隨機抽取5只大鼠,成功麻醉后,立即斷頭處死并迅速取出大腦組織,于腦切片機上連續切取5個冠狀腦片(厚2 mm),隨后置于2%的TTC染色液中,37 ℃避光孵育15~20 min,隨即浸于4%多聚甲醛溶液4 ℃固定24 h。將切片平鋪于純色版上掃描,經TTC染色后,正常腦組織顯示紅色,梗死區域出現白色,梗死體積百分比=(梗死總體積/腦部總體積)×100%,采用Image J軟件進行數據分析。
1.2.4 腦含水量的檢測 采用干濕重法[13]檢測各組大鼠腦含水量變化,用于評估腦水腫的程度。術后72 h,每組隨機抽取6只大鼠,成功麻醉后,斷頭處死,快速分離取出腦組織,放入電子天平稱濕質量,隨后將腦組織放置105 ℃烘箱中烘烤24 h直至完全烘干,稱干質量3次,取其平均值。最后統計各組腦含水量=(濕質量-干質量)/濕質量×100%。
1.2.5 Western blot檢測大鼠腦組織Iba-1、TLR4和NF-κB p65蛋白表達 術后72 h,每組隨機抽取6只大鼠,成功麻醉后,斷頭處死。冰上快速取出大腦梗死組織,其中一半組織采用RIPA裂解并提取組織總蛋白,經過BCA法測定蛋白濃度后制備樣品。取25 μg蛋白樣品上樣,行10% SDS-PAGE,濕轉法轉膜,室溫下封閉液快速封閉12 min后加入一抗Iba-1、TLR4(均1∶200)和NF-κB p65、p-NF-κB p65、β-actin(均1∶1 000),4 ℃搖床孵育過夜,次日回收相應一抗,于0.1 mol/L TBST清洗(5 min×3次)后加入鼠二抗或兔二抗(1∶5 000)室溫搖床孵育2 h,再次0.1 mol/L TBST 洗滌(5 min×3次)后ECL顯色,以β-actin為內參,通過計算各組蛋白與相應內參的灰度值比值,檢測目的蛋白的相對表達水平。
1.2.6 ELISA法檢測大鼠腦組織IL-1β、TNF-α和IL-6分子表達 快速收取1.2.5中另一半大鼠腦組織,充分研磨后收取上清液,按照相關ELISA試劑盒說明書步驟檢測IL-1β、TNF-α和IL-6的表達水平。
1.2.7 免疫熒光染色檢測大鼠腦組織Iba-1和Neuron蛋白表達 術后72 h,每組取3只大鼠,成功麻醉后,立即暴露胸腔,于左心室插管注入提前預冷的生理鹽水,剪刀剪破右心耳,待流出清澈液體后,換用4%多聚甲醛灌流直至大鼠頸部強直,肝腸發白,四肢、尾部僵硬后取出右側損傷腦組織。隨后依次將其浸泡于4%多聚甲醛固定及30%蔗糖溶液沉糖。OCT包埋后速凍,連續獲取厚度8 ?m冰凍切片,室溫放置30 min后,0.1 mol/L PBS清洗(5 min×3次),10%山羊血清室溫封閉1 h后加入Iba-1(1∶50)或Neuron(1∶50),4 ℃冰箱孵育過夜。次日,0.1 mol/L PBS清洗(5 min×3次)后滴加1∶400的鼠熒光二抗,室溫避光孵育2 h。0.1 mol/L PBS清洗(5 min×3次),DAPI染色8 min并用50%甘油封片,隨后熒光顯微鏡下拍照。
1.3 統計學方法 采用SPSS 25.0進行數據分析。符合正態分布的計量資料以均數±標準差(x±s)表示。2組均數比較采用獨立樣本t檢驗,多組間均數比較采用單因素方差分析,組間多重比較行LSD-t法。P<0.05為差異有統計學意義。
2 結果
2.1 SE促進大鼠CIRI后神經功能恢復 CIRI組術后24、48和72 h時大鼠神經功能缺損評分均高于Sham組(P<0.05),SE低劑量組與CIRI組比較差異無統計學意義(P>0.05)。除術后24 h時SE中劑量組與CIRI組差異無統計學意義外,SE中、高劑量組大鼠神經功能缺損評分均低于CIRI組(P<0.05)。術后24、48 h時,SE低、中、高劑量組大鼠神經功能缺損評分差異無統計學意義;術后72 h時,SE低、中、高劑量組大鼠神經功能缺損評分依次降低(P<0.05)。見表1。
2.2 SE降低大鼠CIRI后腦梗死體積百分比及緩解腦水腫 Sham組大鼠腦組織顏色正常,未見梗死。與Sham組比較,CIRI組大鼠腦梗死體積百分比增大,腦組織含水量增多(P<0.05)。與CIRI組比較,SE低劑量組大鼠腦梗死體積百分比及腦組織含水量差異均無統計學意義;中、高劑量組大鼠腦梗死體積百分比減小,腦組織含水量降低(P<0.05)。SE低、中、高劑量組腦梗死體積百分比依次降低(P<0.05)。見圖1、表2。
2.3 SE抑制大鼠CIRI后TLR4、p-NF-κB p65和Iba-1蛋白的表達 與Sham組相比,CIRI組大鼠腦組織TLR4、p-NF-κB p65和Iba-1蛋白表達水平均升高(P<0.05),SE低劑量組與CIRI組差異無統計學意義。SE中、高劑量組大鼠腦組織TLR4、p-NF-κB p65和Iba-1蛋白表達水平均低于CIRI組和SE低劑量組(P<0.05);SE高劑量組腦組織Iba-1蛋白表達水平低于SE中劑量組,TLR4、p-NF-κB p65蛋白表達水平與SE中劑量組差異無統計學意義,見表3、圖2。免疫熒光染色檢測Iba-1蛋白表達的結果與Western blot一致,見圖3。
2.4 SE緩解大鼠ICRI后炎性因子的釋放 與Sham組相比,CIRI組促炎因子IL-1β、TNF-α和IL-6水平均升高(P<0.05),SE低劑量組與CIRI組差異無統計學意義。SE低、中、高劑量組IL-1β、TNF-α和IL-6水平依次降低,差異均有統計學意義(P<0.05),見表4。
2.5 SE促進大鼠CIRI后神經元的存活 Sham組大鼠神經元數量較多,形態結構正常,分布均勻。CIRI組大鼠神經元數量顯著減少,細胞形態不規則,細胞核破壞明顯。低劑量組大鼠神經元數量和形態較CIRI組輕微緩解。中、高劑量組大鼠神經元數量較CIRI組明顯增多,細胞形態顯著緩解。見圖4。
3 討論
缺血性腦卒中是最常見的腦卒中類型,其發病率呈逐年上升趨勢且趨于年輕化,致殘率和死亡率均較高[1]。早期有效的溶栓、疏通血管是治療缺血性腦卒中的關鍵。但當溶栓治療后血管再通的同時極易引發CIRI[14]。小膠質細胞介導的炎癥反應是CIRI發生的主要原因,在腦缺血再灌注進展中具有顯著的負面影響,腦缺血再灌注后刺激小膠質細胞的活化,后者釋放大量炎性因子,加重腦組織的損傷并導致神經元的凋亡[5,15]。因此尋求有效的藥物治療、抑制炎性細胞的活化和炎性因子的釋放對緩解CIRI和改善神經功能缺損具有重要的作用。
近年來研究發現,SE在阿爾茨海默病(AD)和PD中發揮顯著的抗炎、抗氧化應激及抗凋亡作用[16];Lin等[10]在大鼠β-淀粉樣蛋白沉積誘導的AD模型中證實,口服SE(20 mg/kg和40 mg/kg)可以有效抑制小膠質細胞介導的炎癥反應,緩解大鼠腦認知功能障礙和神經退行性病變。Leonoudakis等[11]通過體外復制PD模型亦證實SE可以有效抑制小膠質細胞和星形膠質細胞的活化,降低TNF-α、IL-1β和IL-6等炎性因子的釋放,發揮神經保護作用。此外,有研究顯示,SE可以顯著促進抑郁大鼠神經元的分化和突觸形成,發揮抗抑郁功能[17]。以上研究均提示SE在中樞神經系統疾病中發揮保護性作用,然而SE在大鼠CIRI后相關作用少見報道。本研究通過線栓法建立大鼠右側CIRI模型,發現大鼠在經歷局部腦組織的缺血和再灌注后表現出明顯的神經功能障礙,出現腦梗死和水腫,缺血側腦組織內小膠質細胞顯著激活及炎性因子IL-1β、TNF-α、IL-6水平升高;SE低劑量對大鼠CIRI無顯著的神經保護作用,SE中、高劑量可降低大鼠CIRI后神經功能缺損評分,減少腦梗死體積,緩解腦組織水腫程度,并且抑制腦組織中Iba-1蛋白的表達及促炎因子IL-1β、TNF-α、IL-6的釋放,進而促進神經元的存活,發揮腦損傷保護作用,這與既往研究結果基本一致。另外,本研究結果顯示,SE中、高劑量組大鼠在術后72 h神經功能缺損評分和腦梗死體積百分比低于低劑量組,高劑量組大鼠神經功能缺損評分和腦梗死體積百分比低于中劑量組,提示SE對CIRI大鼠的腦保護作用可能具有劑量依賴性。
TLR4是一種模式識別受體,廣泛分布于腦室周圍血管叢、小膠質細胞和星形膠質細胞,主要參與細胞免疫應答和炎癥反應的調控[18]。大鼠局部腦缺血損傷后,TLR4表達水平明顯上升,隨后活化下游的信號因子NF-κB,促進IL-6、TNF-α等炎性因子的釋放,進一步加重局部缺血再灌注引起的細胞損傷[19]。大量研究已證實,抑制大鼠CIRI后TLR4/NF-κB通路可有效阻止細胞內炎癥信號級聯反應的擴大,抑制炎性因子的釋放,從而發揮神經細胞保護作用[20-21]。本研究進一步探討SE抑制CIRI誘導炎癥的可能機制,通過Western blot檢測大鼠CIRI后TLR4和p-NF-κB p65蛋白的表達,結果顯示,與Sham組相比,CIRI組TLR4和p-NF-κB p65蛋白表達水平升高,提示CIRI后可誘導TLR4/NF-κB通路的激活;與CIRI組相比,中、高劑量SE可降低TLR4和p-NF-κB p65蛋白表達水平;采用免疫熒光染色評估大鼠CIRI后損傷區域神經元存活情況,發現大鼠CIRI后導致神經元結構破壞及數量減少,給予中、高劑量SE后可顯著促進神經元的存活,緩解神經元形態結構的破壞。
綜上,SE可以有效緩解大鼠CIRI后腦梗死和水腫程度,改善大鼠損傷后神經功能障礙,促進神經元存活,且其作用機制可能與TLR4/NF-κB通路相關,即SE可通過抑制TLR4/NF-κB通路,降低小膠質細胞介導的炎性因子的釋放,發揮抗炎和腦保護作用。本研究亦發現SE在發揮CIRI保護作用時可能具有劑量依賴性,高劑量SE的腦保護效果更加明顯。
參考文獻
[1] BOOT E,EKKER M S,PUTAALA J,et al. Ischaemic stroke in young adults:a global perspective[J]. J Neurol Neurosurg Psychiatry,2020,91(4):411-417. doi:10.1136/jnnp-2019-322424.
[2] DONG X,WANG L,SONG G,et al. Physcion protects rats against cerebral ischemia-reperfusion injury via inhibition of TLR4/NF-κB signaling pathway[J]. Drug Des Devel Ther,2021,15:277-287. doi:10.2147/DDDT.S267856.
[3] ZHOU X,WANG Z,XU B,et al. Long non-coding RNA NORAD protects against cerebral ischemia/reperfusion injury induced brain damage,cell apoptosis,oxidative stress and inflammation by regulating miR-30a-5p/YWHAG[J]. Bioengineered,2021,12(2):9174-9188. doi:10.1080/21655979.2021.1995115.
[4] XIE X,WANG F,LI X. Inhibition of TRIM14 protects cerebral ischemia/reperfusion injury through regulating NF-κB/NLRP3 pathway-mediated inflammation and apoptosis[J]. J Recept Signal Transduct Res,2022,42(2):197-205. doi:10.1080/10799893.2021.1887218.
[5] ZHENG K,ZHANG Y,ZHANG C,et al. PRMT8 attenuates cerebral ischemia/reperfusion injury via modulating microglia activation and polarization to suppress neuroinflammation by upregulating Lin28a[J]. ACS Chem Neurosci,2022,13(7):1096-1104. doi:10.1021/acschemneuro.2c00096.
[6] CHIRKIN E,ATKATLIAN W,POREE F H. The securinega alkaloids[J]. Chem Biol,2015,74:1-120. doi:10.1016/bs.alkal.2014.11.001.
[7] BEUTLER J A,KARBON E W,BRUBAKER A N,et al. Securinine alkaloids:a new class of GABA receptor antagonist[J]. Brain Res,1985,330(1):135-140. doi:10.1016/0006-8993(85)90014-9.
[8] BURAVTSEVA G R. Result of application of securinine in acute poliomyelitis[J]. Farmakol Toksikol,1958,21(5):7-12. doi:10.1371/journal.pone.0021203.
[9] COPPERMAN R,COPPERMAN G,DER MARDEROSIAN A. From Asia securinine:a central nervous stimulant is used in treatment of amytrophic lateral sclerosis[J]. Pa Med,1973,76(1):36-41.
[10] LIN X,JUN T Z. Neuroprotection by D-securinine against neurotoxicity induced by beta-amyloid(25-35)[J]. Neurol Res,2004,26(7):792-796. doi:10.1179/016164104225014148.
[11] LEONOUDAKIS D,RANE A,ANGELI S,et al. Anti-inflammatory and neuroprotective role of natural product securinine in activated glial cells:Implications for Parkinson's disease[J]. Mediators Inflamm,2017,2017:8302636. doi:10.1155/2017/8302636.
[12] LONGA E Z,WEINSTEIN P R,CARLSON S,et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke,1989,20(1):84-91. doi:10.1161/01.str.20.1.84.
[13] YE Y,JIN T,ZHANG X,et al. Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-kappaB signaling pathway[J]. Front Cell Neurosci,2019,13:553. doi:10.3389/fncel.2019.00553.
[14] WU M Y,YIANG G T,LIAO W T,et al. Current mechanistic concepts in ischemia and reperfusion injury[J]. Cell Physiol Biochem,2018,46(4):1650-1667. doi:10.1159/000489241.
[15] CUI Y,ZHANG N N,WANG D,et al. Modified citrus pectin alleviates cerebral ischemia/reperfusion injury by inhibiting NLRP3 inflammasome activation via TLR4/NF-κB signaling pathway in microglia[J]. J Inflamm Res,2022,15:3369-3385. doi:10.2147/JIR.S366927.
[16] NEGANOVA M E,KLOCHKOV S G,AFANASIEVA S V,et al. Neuroprotective effects of the securinine-analogues:Identification of allomargaritarine as a lead compound[J]. CNS Neurol Disord Drug Targets,2016,15(1):102-107. doi:10.2174/1871527314666150821111812.
[17] XIAO H,ZHANG Q,ZHONG P,et al. Securinine promotes neuronal development and exhibits antidepressant-like effects via mtor activation[J]. ACS Chem Neurosci,2021,12(19):3650-3661. doi:10.1021/acschemneuro.1c00381.
[18] LIU Q,ZHANG Y. PRDX1 enhances cerebral ischemia-reperfusion injury through activation of TLR4-regulated inflammation and apoptosis[J]. Biochem Biophys Res Commun,2019,519(3):453-461. doi:10.1016/j.bbrc.2019.08.077.
[19] ZHAO D,JI J,LI S,et al. Skullcapflavone II protects neuronal damage in cerebral ischemic rats via inhibiting NF-κB and promoting angiogenesis[J]. Microvasc Res,2022,141:104318. doi:10.1016/j.mvr.2022.104318.
[20] TIAN X Y,XIE L,WANG W Y,et al. Pomelo peel volatile oil alleviates neuroinflammation on focal cerebral ischemia reperfusion injury rats via inhibiting TLR4/NF-κB signaling pathway[J]. Curr Pharm Biotechnol,2021,22(14):1878-1890. doi:10.2174/1389201022666201231114403.
[21] LIU J,MA W,ZANG C H,et al. Salidroside inhibits NLRP3 inflammasome activation and apoptosis in microglia induced by cerebral ischemia/reperfusion injury by inhibiting the TLR4/NF-κB signaling pathway[J]. Ann Transl Med,2021,9(22):1694. doi:10.21037/atm-21-5752.
(2022-11-14收稿 2023-01-12修回)
(本文編輯 陳麗潔)