




摘要:
為評估不同種鳥類的病原體傳播風險,提取紅嘴鷗和喜鵲糞便的總DNA,通過PCR擴增16S rRNA序列V3~V4高變區,基于高通量測序和生物信息學研究兩者腸道微生物群差異。研究結果顯示,紅嘴鷗和喜鵲糞便微生物群組成存在顯著差異,兩者糞便中最豐富的細菌門分別是厚壁菌門和變形菌門,前者糞便中絕對優勢屬是Catellicoccus(豐度均值65.5%)。紅嘴鷗樣本中均檢測出彎曲桿菌屬,檢出率100%,豐度均值1.2%;喜鵲樣本檢出率55.6%,豐度均值0.019%。這表明,青島市紅嘴鷗種群廣泛存在彎曲桿菌屬,紅嘴鷗的接觸安全風險高于喜鵲。
關鍵詞:
紅嘴鷗;喜鵲;腸道菌群;高通量測序
中圖分類號:Q938
文獻標志碼:A
文章編號:10061037(2024)03001507
doi:10.3969/j.issn.10061037.2024.03.03
收稿日期:2023-11-26
基金項目:
國家重點研發計劃(批準號:2018YFA0900802)資助;山東省重點研發計劃(批準號:2019JZZY011009)資助;青島市科技計劃重點研發專項(批準號:20-2-3-4-nsh)資助。
通信作者:
王斌,男,博士,教授,主要研究方向為醫學病毒學等。E-mail:wangbin532@126.com
紅嘴鷗(Chroicocephalus ridibundus)是一種廣泛分布于亞歐大陸的候鳥,候鳥的遷徙行為可能導致病原體的遠距離傳播,每年十月紅嘴鷗遷徙至青島市越冬,可能引發病原體傳播的擔憂[1]。紅嘴鷗能夠攜帶多種病原體,包括沙門氏菌、單核細胞增生李斯特氏菌、德爾塔冠狀病毒(Deltacoronavirus,DCoV)和甲型流感病毒等[2-5]。以DCoV為例,鳥類是DCoV的主要宿主,研究發現麻雀和豬DCoV具有進化關系,表明鳥類和哺乳動物存在潛在種間傳播[6-7]。喜鵲(Pica pica)是一種分布廣泛的鴉科鳥類,主要棲息于城市和鄉村,活動范圍較小(約10~50 km),具有機會性捕食和食腐的特點[8]。目前,針對喜鵲的病原體攜帶研究較少,喜鵲作為對照鳥類參與研究,可明確其腸道微生物群構成,突出紅嘴鷗的腸道微生物群特點。因此,本文跨物種比較了紅嘴鷗和喜鵲的腸道微生物群差異,以期評估紅嘴鷗和喜鵲的接觸安全風險,為野生鳥類腸道微生物群研究提供基礎參考。
1" 材料與方法
1.1nbsp; 樣品采集
紅嘴鷗和喜鵲的糞便樣本分別采集于南姜碼頭(120°57′84″ N, 36°09′81″ E)和小麥島地區(120°42′28″ N, 36°06′11″ E),采樣日期為2022年4月4日~2022年4月27日,樣品分多次采集。地面或景觀綠化上鋪設潔凈塑料布,觀察鳥類排泄后,采集新鮮、未被污染且來源明確的糞便樣本于1.5 mL離心管中,放置于冰盒內短期保存。待回實驗室后,保存于-80" ℃超低溫冰箱。共采集12份紅嘴鷗樣本和11份喜鵲樣本。
1.2" DNA提取、聚合酶鏈式反應和高通量測序
通過Omega E.Z.N.A. Stool DNA Kit提取糞便總DNA,采用Qubit 2.0熒光分光光度計和瓊脂糖凝膠電泳檢測DNA的濃度和質量。用引物341F(5′-CCTACGGGNGGCWGCAG-3′)和805R(5′-GACTACHVGGGTATCTAATCC-3′)擴增16S rRNA基因V3~V4高變區[9]。Polymerase Chain Reaction(PCR)反應體系:2×PCR Master Mix 15 μL,上、下游引物(10 μmol/L)各1 μL,模板DNA 10 ng,雙蒸水補足30 μL。PCR反應條件:98 ℃預變性1 min;98 ℃變性10 s,50 ℃退火30 s,72 ℃延伸30 s,30次循環;72 ℃延伸5 min。產物用瓊脂糖凝膠電泳檢測,后用Nanodrop定量。PCR產物委托北京貝瑞和康生物技術有限公司建庫后測序。通過TIANSeq快速DNA文庫構建試劑盒建立測序文庫,用Qubit和Agient2100定量并檢測文庫質量,質檢合格的文庫基于Illumina MiSeq平臺測序。
青島大學學報(自然科學版)第37卷
第3期""" 劉文軒等:紅嘴鷗和喜鵲的糞便微生物群多樣性比較研究
1.3" 數據處理和生物信息學分析
Trimmomatic(version 0.33)過濾原始數據,Cutadapt(version 1.9.1)識別和去除引物序列[10-11]。QIIME2(version 2020.6)去噪、拼接序列和去除嵌合體得高質量序列[12]。樸素貝葉斯分類器以Silva.138為參考數據庫完成分類學注釋,在界(Kindom)、門(Phylum)、綱(Class)、目(Order)、科(Family)、屬(Genus)、種(Species)7個分類等級統計物種分布[13]。QIIME2以最低樣本序列數總量的95%做標準化處理,以保證樣本間菌群多樣性的可比性。QIIME2用于完成樣本的Alpha多樣性分析和Beta多樣性分析。通過Welch′s t-test做兩組間物種豐度的差異分析,Plt;0.05時為具有顯著差異。PICRUSt2預測群落功能[14]。R語言繪制Venn圖,展示共有和特有的組間分類操作單元(Operational Taxonomic Unit,OTU)。
2" 結果
2.1" 兩組樣本16S rRNA擴增子測序結果
12份紅嘴鷗樣本和11份喜鵲樣本的PCR產物中,分別有10份和9份經瓊脂糖凝膠電泳檢測后質檢合格,并成功建庫。紅嘴鷗樣本共獲得1 044 175條有效序列,喜鵲樣本共獲得831 090條有效序列,分別占原始數據80.5%和70.8%。標準化后樣品測序深度為60 566,總OTUs數量為4 262。由圖1可知,兩組樣本共有及特有的OTUs數目中,紅嘴鷗樣本和喜鵲樣本有628個共有OTUs,分別有1 636個和1 868個特有OTUs。紅嘴鷗樣本中所得OTUs歸類于11個門、39個綱、56個目、271個科、819個屬和877個種,喜鵲樣本中所得OTUs歸類于12個門、34個綱、37個目、312個科、1 067個屬和731個種,無法鑒別的OTUs數目分別占OTUs總數5.0%和7.1%,表明測序質量良好。隨著測序數據量增加,稀釋性曲線趨于平坦,表明測序數據量充足(圖2)。
2.2" 兩組樣本微生物群多樣性分析
Alpha多樣性反映樣品的物種豐度和物種多樣性,其中ACE和Chao1指數反映樣品物種豐度,Simpson和Shannon指數反映樣品物種多樣性。由表1可知,所有Alpha多樣性指數覆蓋率均大于99.9%。喜鵲樣本ACE、Chao1、Simpson和Shannon指數均略高于紅嘴鷗樣本,表明喜鵲糞便微生物群豐富度和多樣性略高,但兩組間差異不顯著(Kruskal-Wallis秩和檢驗,Pgt;0.05)。由圖3可知,Beta多樣性反映兩組間微生物群落差異,基于bray-curtis距離的主坐標分析(Principal coordinates analysis,PCoA),紅嘴鷗樣本和喜鵲樣本Beta多樣性存在顯著差異(Kruskal-Wallis秩和檢驗,P=0.000 327)。
2.3" 兩組樣本微生物群組成分析
門水平上,紅嘴鷗樣本和喜鵲樣本分別鑒定出11個菌門和12個菌門(圖4(a))。紅嘴鷗樣本的優勢菌門為厚壁菌門(Firmicutes,77.00%)、變形菌門(Proteobacteria,12.35%)和擬桿菌門(Bacteroidota,3.24%);喜鵲樣本的優勢菌門為Proteobacteria(50.89%)、Firmicutes(42.00%)和放線菌門(Actinobacteriota,4.22%)。紅嘴鷗樣本中梭桿菌門(Fusobacteriota)、泉古菌門(Crenarchaeota)、Firmicutes和熱脫硫桿菌門(Desulfobacterota)的豐度顯著高于喜鵲樣本;而喜鵲樣本中Actinobacteriota、Proteobacteria和Bdellovibrionota豐度顯著高于紅嘴鷗樣本(圖4(b))。
屬水平上,紅嘴鷗樣本和喜鵲樣本分別鑒定出819個菌屬和1 067個菌屬,其中67個菌屬存在顯著豐度差異(圖5(a))。Catellicoccus是紅嘴鷗樣本的主要菌屬,平均豐度占比65.5%,部分樣本豐度占比超過90%。豐度大于1%的菌屬中,紅嘴鷗樣本中Catellicoccus豐度顯著高于喜鵲樣本,而喜鵲樣本中Rickettsiella、Sarcina、腸球菌屬(Enterococcus)和假單胞菌屬(Pseudomonas)豐度顯著高于紅嘴鷗樣本(圖5(b))。此外,紅嘴鷗樣本中重要人畜共患病病原體彎曲桿菌屬(Campylobacter)豐度顯著高于喜鵲樣本。10份紅嘴鷗樣本均檢出Campylobacter,豐度均值1.2%;9份喜鵲樣本中5份檢出Campylobacter,豐度均值0.019%。
2.4" 兩組樣本微生物群功能預測
PICRUSt2預測發現,紅嘴鷗樣本和喜鵲樣本微生物群功能存在差異,主要功能差異集中于KEGG一級分類中人類疾病(Human diseases)、環境信息處理(Environmental information processing)、細胞過程(Cellular processes)、代謝(Metabolism)和有機系統(Organismal systems)。而在細分的KEGG二級分類中,紅嘴鷗糞便微生物群的細菌性傳染病(Infectious disease: bacterial)、膜運輸(Membrane transport)、核苷酸代謝(Nucleotide metabolism)和轉錄(Transcription)功能顯著高于喜鵲(圖6)。
3" 討論
野生鳥類糞便樣本采樣困難,導致微生物群相關研究較少。由于飲食結構和物種的差異,紅嘴鷗和喜鵲的糞便微生物群構成存在明顯區別。研究發現,紅嘴鷗糞便微生物群中的Catellicoccus marimammalium平均豐度為67.5%,是紅嘴鷗糞便微生物群的核心菌種。Catellicoccus菌屬最初分離自鼠海豚和灰海豹,屬于腸球菌科(Enterococcaceae),Catellicoccus marimammalium是Catellicoccus菌屬的唯一種[15]。與以
往研究相似,Catellicoccus marimammalium是紅嘴鷗腸道內的絕對優勢菌種,同樣是鷗科動物腸道微生物群的特征性物種。海鷗糞便污染是部分沿海地區糞便污染的常見來源。Catellicoccus marimammalium能夠用于海水糞便污染溯源,該菌種富集提示海鷗來源的糞便污染,而腸桿菌科(Enterobacteriaceae)細菌富集提示人源糞便污染[16]。通常人源糞便污染的安全風險高于海鷗來源,明確海水糞便污染來源對風險評估具有重要意義,能減少諸如非必要海灘關閉等引發的經濟損失。
沙門氏菌屬(Salmonella)和Campylobacter是鳥類攜帶的兩種最重要人畜共患病病原體之一,鳥類通過排出帶菌糞便污染農田和水源,進而引發跨物種傳播風險[17]。海鷗的棲息范圍與人類存在較大重疊,已發現部分海鷗物種攜帶Salmonella和Campylobacter病原體[18-19]。紅嘴鷗樣本和喜鵲樣本中均未檢出Salmonella,所有紅嘴鷗樣本中均檢出Campylobacter。Campylobacter是發達國家和發展中國家消化道傳染病的重要原因[20]。除經典的空腸彎曲桿菌(Campylobacter jejuni)外,其他新發現的Campylobacter成員Campylobacter concisus和Campylobacter ureolyticus等均具有臨床重要性,而禽類是彎曲桿菌向人類傳播的主要宿主和傳染源[21]。流行病學方面,2017~2019年北京市感染性腹瀉細菌病原譜的調查發現,18 182例腹瀉患者中4 025例腸道致病菌檢測呈陽性,共分離到4 202株陽性菌株,其中彎曲桿菌539株,占比12.83%[22]。全國范圍內的急性腹瀉監測發現,Campylobacter jejuni和結腸彎曲桿菌(Campylobacter coli)年齡標準化陽性率分別為1.11%和0.21%,僅次于13種常規監測病原菌中的致瀉性大腸埃希氏菌(7.41%)、非傷寒沙門氏菌(4.90%)和副溶血性弧菌(1.80%)[23]。盡管彎曲桿菌感染病死率較低,但可引起部分慢性消化道疾病,包括炎癥性腸病和腸應激綜合征等,其長期感染與嚴重神經系統疾病格林-巴利綜合征相關[24-26]。因此,需要持續關注彎曲桿菌的流行特征。Campylobacter在青島市紅嘴鷗種群中廣泛存在且豐度較高,與紅嘴鷗的接觸可能增加Campylobacter的傳播風險。
4" 結論
本文分析了野生狀態下紅嘴鷗和喜鵲的糞便微生物群組成及多樣性,發現兩種鳥類腸道菌群結構存在顯著差異,并鑒定各自優勢的分類單元。組成分析和功能預測發現紅嘴鷗致病菌Campylobacter的豐度顯著高于喜鵲,提示接觸紅嘴鷗安全風險高于喜鵲。后續研究將考慮從紅嘴鷗糞便中分離Campylobacter細菌,通過藥敏試驗和毒力分析評價其致病潛力,并持續監測紅嘴鷗中彎曲桿菌的流行特征,為減少紅嘴鷗來源彎曲桿菌的暴露風險提供理論指導。
參考文獻
[1]USHINE N, SATO T, KATO T, et al. Analysis of body mass changes in the Black-Headed Gull (Larus ridibundus) during the winter[J]. Journal of Veterinary Medical Science, 2017, 79(9): 1627-1632.
[2]GAN L, CAO X L, WANG Y, et al. Carriage and potential long distance transmission of Listeria monocytogenes by migratory black-headed gulls in Dianchi Lake, Kunming[J]. Emerging Microbes amp; Infections, 2019, 8(1): 1195-1204.
[3]VERHAGEN J H, MAJOOR F, LEXMOND P, et al. Epidemiology of influenza a virus among black-headed gulls, the Netherlands, 2006-2010[J]. Emerging Infectious Diseases, 2014, 20(1): 138-141.
[4]COULSON J C, BUTTERFIELD J, THOMAS C. The herring gull Larus argentatus as a likely transmitting agent of Salmonella montevideo to sheep and cattle[J]. The Journal of Hygiene, 1983, 91(3): 437-443.
[5]CHU K K, ZHOU Z J, WANG Q, et al. Characterization of deltacoronavirus in black-headed gulls (Chroicocephalus ridibundus) in South China indicating frequent interspecies transmission of the virus in birds[J]. Frontiers in Microbiology, 2022, 13: 895741.
[6]CHEN Q, WANG L Y, YANG C H, et al. The emergence of novel sparrow deltacoronaviruses in the United States more closely related to porcine deltacoronaviruses than sparrow deltacoronavirus HKU17[J]. Emerging Microbes amp; Infections, 2018, 7(1): 105.
[7]WOO P C Y, LAU S K P, LAM C S F, et al. Discovery of seven novel mammalian and avian coronaviruses in the genus Deltacoronavirus supports bat coronaviruses as the gene source of Alphacoronavirus and Betacoronavirus and avian coronaviruses as the gene source of Gammacoronavirus and Deltacoronavirus[J]. Journal of Virology, 2012, 86(7): 3995-4008.
[8]IEMMI T, MENOZZI A, PREZ-LPEZ M, et al. Heavy metal assessment in feathers of Eurasian Magpies (Pica pica): A possible strategy for monitoring environmental contamination?[J]. International Journal of Environmental Research and Public Health, 2021, 18(6): 2973.
[9]KLINDWORTH A, PRUESSE E, SCHWEER T, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies[J]. Nucleic Acids Research, 2013, 41(1): e1.
[10] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120.
[11] KECHIN A, BOYARSKIKH U, KEL A, et al. cutPrimers: A new tool for accurate cutting of primers from reads of targeted next generation sequencing[J]. Journal of Computational Biology, 2017, 24(11): 1138-1143.
[12] BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology, 2019, 37(8): 852-857.
[13] QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(D1): D590-D596.
[14] DOUGLAS G M, MAFFEI V J, ZANEVELD J R, et al. PICRUSt2 for prediction of metagenome functions[J]. Nature Biotechnology, 2020, 38(6): 685-688.
[15] LAWSON P A, COLLINS M D, FALSEN E, et al. Catellicoccus marimammalium gen. nov., sp. nov., a novel Gram-positive, catalase-negative, coccus-shaped bacterium from porpoise and grey seal[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(2): 429-432.
[16] LEE C, MARION J W, LEE J. Development and application of a quantitative PCR assay targeting Catellicoccus marimammalium for assessing gull-associated fecal contamination at Lake Erie beaches[J]. Science of the Total Environment, 2013, 454-455: 1-8.
[17] ANTILLES N, GARCA-BOCANEGRA I, ALBA-CASALS A, et al. Occurrence and antimicrobial resistance of zoonotic enteropathogens in gulls from southern Europe[J]. Science of the Total Environment, 2021, 763: 143018.
[18] HUBLEK Z, SIXL W, MIKULKOV M, et al. Salmonellae in gulls and other free-living birds in the Czech Republic[J]. Central European Journal of Public Health, 1995, 3(1): 21-24.
[19] KAPPERUD G, ROSEF O. Avian wildlife reservoir of Campylobacter fetus subsp. jejuni, Yersinia spp., and Salmonella spp. in Norway[J]. Applied and Environmental Microbiology, 1983, 45(2): 375-380.
[20] BAKER M G, SNEYD E, WILSON N A. Is the major increase in notified campylobacteriosis in New Zealand real?[J]. Epidemiology and Infection, 2007, 135(1): 163-170.
[21] KAAKOUSH N O, CASTAO-RODRGUEZ N, MITCHELL H M, et al. Global epidemiology of Campylobacter infection[J]. Clinical Microbiology Reviews, 2015, 28(3): 687-720.
[22] 黃瑛, 田祎, 呂冰, 等. 2017-2019年北京市感染性腹瀉細菌病原譜與流行特征分析[J]. 中國預防醫學雜志, 2021, 22(2): 93-97.
[23] WANG L P, HAN J Y, ZHOU S X, et al. The changing pattern of enteric pathogen infections in China during the COVID-19 pandemic: A nation-wide observational study[J]. The Lancet Regional Health - Western Pacific, 2021, 16: 100268.
[24] GRADEL K O, NIELSEN H L, SCHNHEYDER H C, et al. Increased short- and long-term risk of inflammatory bowel disease after Salmonella or Campylobacter gastroenteritis[J]. Gastroenterology, 2009, 137(2): 495-501.
[25] SHAHRIZAILA N, LEHMANN H C, KUWABARA S. Guillain-Barré syndrome[J]. The Lancet, 2021, 397: 1214-1228.
[26] THABANE M, MARSHALL J K. Post-infectious irritable bowel syndrome[J]. World Journal of Gastroenterology, 2009, 15(29): 3591-3596.
Comparative" Study on the Fecal Microbiota Diversity of" Black-Headed Gull and Magpie
LIU Wen-xuan, YANG Xiao-li, LI Zong-hui, WANG Bin
(School of Basic Medicine, Qingdao University,Qingdao 266000, China)
Abstract:
Total DNA from fecal samples were extracted and the V3~V4 hypervariable region of the 16S rRNA sequence was amplified to assess the potential risk of bird-to-human pathogen transmission in different bird species. Gut microbiota characterizations were determined with high-throughput sequencing and the followed bioinformatical analyses. The results show remarkable differences in the fecal microbiota between black-headed gulls and magpies. Firmicutes and Proteobacteria are the primary bacterial phyla in black-headed gull and magpie feces, respectively. Catellicoccus is the predominant genus in black-headed gull feces, and the average abundance is 65.5%. The detective rate of Campylobacter in black-headed gull feces is 100%, and the average abundance is 1.2%. But in magpie feces, the detective rate is 55.6%, and the average abundance is 0.019%. This suggests that Campylobacter is widespread in the population of black-headed gull in Qingdao, and the safety risk of exposure to black-headed gulls is higher than magpies.
Keywords:
black-headed gull; magpie; intestinal microbiota; high-throughput sequencing