[摘? 要] 為了培養求聯思維,讓數學學習更溫暖,研究者以具體教學實踐為例,通過橫向求聯,促使學生發現不同對象的關聯;縱向求聯,促使學生發現不同對象的本質;生長求聯,促使學生發現不同對象的遷移。
[關鍵詞] 求聯思維;蘇教版;數學學習
求聯思維就是由已知的人、事、概念等聯系到相關的人、事、概念,從而建立彼此之間的聯系,即主動建構關系。鄭毓信教授曾說:“數學教學中的知識不是越多越好,數學知識的理解貴在求聯而不在求全?!?/p>
在小學數學階段,數學知識具有較強的系統性和聯系性,教師可以從不同角度進行求聯。比如,根據形象和抽象建立聯系,在相關知識點之間建立聯系,在數學思維方面建立聯系,在某一學習環節中的學習要素之間建立聯系,在不同學習方法之間建立聯系等。筆者結合蘇教版小學數學教材從橫向求聯、縱向求聯和生長求聯等角度進行了求聯思維的教學,收到了不錯的效果。
一、橫向求聯,發現不同對象的關聯
橫向求聯是指教師對教學內容進行并列關系的求聯,與類比思想相似,旨在發現不同教學對象之間的關聯性。
1. 讓學生在數學知識系統中“求聯”
數學知識的編寫具有順序性和邏輯性,為了解決新問題,學生可以利用已有的知識和生活經驗,把新問題分解成一個個舊問題,從而順利地解決問題。
比如在教學“底和高”一課時,筆者利用平行這一位置關系教學底和高,引導學生發現三角形、平行四邊形和梯形畫高的方法都是一致的。
師:我們知道三角形的高是從頂點到對邊的距離,平行四邊形的高是從邊到邊的距離,這兩條邊是平行的關系。同學們,接下來讓我們認識更多圖形的底和高,請你首先在點子圖里畫出你喜歡的三角形、平行四邊形或梯形;然后標一標,在圖形中標出底和高;最后想一想,這個圖形除了這一條高,還有不同的高嗎?
師:有的同學畫了4個圖形,請他來說說怎么畫高的?
生1:我先畫三角形,確定三角形的底,從頂點開始畫對邊的高,標上直角標記,寫上“底”和“高”;我再畫平行四邊形,確定平行四邊形的底,從對邊開始畫底邊的高,標上直角標記,寫上“底”和“高”;最后我畫梯形,確定梯形的底,從對邊開始畫底邊的高,標上直角標記,寫上“底”和“高”。
師:老師發現他的平行四邊形和梯形都畫了兩條高,都對嗎?為什么?
生2:必須有兩個頂點才能組成一個高,這里有四個頂點,那么就是4÷2=2條高。
生3:因為這是一組平行的邊,平行邊之間的距離都是相等的,我們可以畫出無數條高了。
在這個教學片段中,教師充分利用“平行線之間的距離處處相等”這個公理,讓學生經歷畫各種平面圖形的高,引導學生在畫高中發現平行四邊形和梯形可以畫出無數條高。
2. 讓學生在數學知識與生活情境中“求聯”
《義務教育數學課程標準(2022年版)》中提到數學源于生活,又高于生活。數學問題來自生產生活中,數學原理能反過來解決生活中的問題。比如在教學“認識東南西北”一課時,筆者圍繞“生活中的方向與地圖上的方向”“為什么地圖都是‘上北下南左西右東”等問題展開討論,讓學生感受數學知識與生活情境的聯系。
師:(出示太陽升起圖)小朋友們,我們在語文課本中讀到過一首方向的兒歌,誰愿意來背一背?
生1:早上起來,面向太陽,前面是東,后面是西,左面是北,右面是南……
師:你能把剛才說的畫下來嗎?(學生在學習單上畫)老師看到很多同學上面是東、下面是西、左邊是北、右邊是南,這是我們生活中的方向。我們再來看看地圖上的方向,一般是“上北下南左西右東”。為什么會是這樣呢?我們來欣賞微課。
(學生通過觀看微課,了解到中國古人是以北為尊,有坐北面南的習慣;而且中國古人講究陰陽,習慣面向陽光一面,所以自古以來都使用“上北下南左西右東”)
出示題目:小紅的前面是西,她的右面、后面和左面各是什么方向?
師:同學們,請你自己畫一畫方向,確定右面、后面和左面各是什么方向。
生2:因為東和西相對,南和北相對,所以她的后面是東,右面是北,左面是南。
在這個教學片段中,教師通過創設生活情境導入新課,不僅讓學生感受到數學知識與生活實際的關聯性,還讓他們體會到數學解決了生活中的問題,規定了生活中的問題描述,給人們的表達帶來了便利。
二、縱向求聯,發現不同對象的本質
縱向求聯是指教師對教學內容進行遞進關系的求聯,與歸納思想相似,旨在從不同教學對象之間總結出共同的本質特點。
1. 讓學生在不同思維層次中“求聯”
學生在解決問題時會有不同的表征和策略,有的學生喜歡用文字描述自己的觀點,有的學生喜歡用畫圖記錄自己的思考,有的學生喜歡動手嘗試自己的想法。比如在教學“長方形和正方形周長”一課時,筆者發現學生從周長的意義出發,用不同的算式來計算各種圖形的周長。
師:(出示長方形、三角形和正方形等圖形)同學們,如果這個圖形有周長,請你描一描它的周長,再算一算它的周長有多長。
生1:長方形的長是5厘米,寬是3厘米,這個長方形的周長是5+5+3+3=16(厘米);三角形的三條邊分別是3厘米、3厘米和4厘米,這個三角形的周長是3×2+4=10(厘米);正方形的周長是4×4=16(厘米)。
生2:長方形和三角形的周長我有不同的計算方法,我是這樣算長方形周長(3+5)×2=16(厘米),這樣算三角形周長3+3+4=10(厘米)。
師:現在老師把正方形和三角形拼在一起變成了1個小房子,你算一算這個圖形的周長是多少?
生3:10+16=26(厘米)。
生4:不對,中間的那兩條就不能算周長了,周長是指封閉圖形一周的長度。我是這樣算的,3×4+2×3=18(厘米),3×4是下面正方形的周長,2×3是上面長方形的周長。
生5:我是這樣算的,10+16-4-4=18(厘米)。10+16是正方形和長方形的周長,減去2個4是中間的兩條邊不能算周長。
在這個教學片段中,每個學生在計算圖形周長時有不同的計算方法和策略,教師要從這些周長的計算方法中找到聯系:它們都是從周長的意義出發,計算封閉圖形一周的長度。
2. 讓學生在不同學科中“求聯”
《義務教育數學課程標準(2022年版)》中將主題活動分為兩類:第一類是融入數學知識學習的主題活動,第二類是運用數學知識及其他學科知識的主題活動。學生通過主題活動的學習,能學會綜合地運用數學知識解決生活問題,感受數學知識的價值,體會數學與不同學科的“求聯”。
比如在教學“時、分、秒”后,筆者設計了“時間在哪里”的主題活動,引導學生在具體情境中認識時、分、秒,結合生活經驗體會時間有長有短,培養遵守時間的習慣。
師:小朋友們,我們認識了時間,你能說說1秒、1分鐘、1小時分別能做哪些事情?
生1:我跑100米大約需要15秒,跑800米大約需要4分鐘,我從電視上知道跑完馬拉松全程需要2小時。
生2:我1秒鐘可以呼吸1次,1分鐘我能跳繩180下,1小時我能完成語文、數學、美術等作業。
師:我們感受到了時間在哪里,知道在1秒、1分鐘、1小時中我們可以做很多事情。那你知道古人是怎么計時的嗎?
(微課播放中國古代的計時工具,比如漏壺、滴漏、沙漏、日晷等,幫助學生體會逝水流年的意境,感受科學計時的進步)
師:(出示鐘面)小朋友們,我們現在的計時工具主要是鐘表,請你撥一撥時針、分針和秒針,理解時間單位之間的關系。
在這個教學片段中,教師將數學中的時、分、秒與語文、體育、美術、科技創新等聯系在一起,不僅讓學生感受了在規定的時間可以完成很多事情,還體驗了計時工具的發展變化和時間單位之間的關系。
三、生長求聯,發現不同對象的遷移
生長求聯是指教師對教學內容進行承接關系的求聯,與整合思想相似,旨在發現不同教學對象之間的生長和遷移。
1. 讓學生在數學內容階段表征中“求聯”
在小學階段,常見的表征方式有命題表征、符號表征、算式表征、圖示表征等。因此,教師可以把數學知識學習中零散的“點”串聯成“線”,在學生頭腦中形成結構化思維。比如在教學“4的乘法口訣”一課時,筆者首先通過問題情境引導學生畫出點子圖,然后寫出加法算式和乘法算式,最后得到乘法口訣。
師:(出示情境圖和問題:每節車廂坐4人,2節車廂坐多少人?3節、4節車廂呢?)小朋友們,請你根據題目先畫出點子圖,然后寫出加法算式和乘法算式,最后寫出是幾個幾相加和編寫乘法口訣。
生1:(學生展示點子圖)加法算式是4+4=8,表示2個4相加是8,乘法算式是2×4=8或者4×2=8,用乘法口訣“二四得八”;加法算式是4+4+4=12,表示3個4相加是12,乘法算式是3×4=12或者4×3=12,用乘法口訣“三四十二”;加法算式是4+4+4+4=16,表示4個4相加是16,乘法算式是4×4=16,用乘法口訣“四四十六”。
……
師:誰來總結一下剛才我們是怎么學習乘法口訣的?
生2:我們先根據問題畫出點子圖,寫出加法算式和乘法算式,說出幾個幾相加,編寫乘法口訣。
師:是的,我們可以把圖、算式、文字和口訣一一對應起來,更好地理解這句乘法口訣,這也是我們以后學習乘法口訣的秘訣。
在這個教學片段中,教師組織學生用不同的方式表征同一句乘法口訣,不僅用可視化思維串聯起數學知識的概念圖示,還溝通了同類數學知識之間的聯系。
2. 讓學生在數學內容因果中“求聯”
素養導向下的數學學習,不僅要關注數學學習的結果,更要關注數學內容的因果聯系。比如在教學“長方形和正方形的面積”一課時,教師要讓學生感知物體的面積在哪里、會比較不同物體的面積、會計算物體的面積等,讓下一環節的知識在上一環節學習后自然生長出來。
師:(出示“面積”學習單)同學們,請先觀察下面哪些圖形是有面積的,再用彩筆描一描它們的面積。
生3:(展示學習單)正方形、長方形、三角形、愛心都是有面積的,它們的面積都是里面部分。角是沒有面積的。
師:誰來總結一下什么是面積?
生4:物體的表面或者封閉圖形的大小,叫作它們的面積。
師:(出示“面積”學習單)我們知道了什么是面積,你能比較這兩個圖形的大小嗎(見圖1)?
生5:我用方格紙數格子,左邊的長方形有16格,右邊的長方形有15格,所以左邊的長方形面積大。
生6:我先量出這兩個長方形的長和寬,再算出它們的面積來比較大小。左邊的長方形面積是2×8=16,右邊的長方形面積是3×5=15,所以左邊的長方形面積大。
師:當我們用眼睛不能直接看出面積的大小時,我們可以用重疊、數方格、計算面積來比較物體的面積大小。
在這個教學片段中,教師的教學設計充分體現了數學內容因果中的“求聯”。學生的數學學習過程環環相扣,在學習面積知識過程中,只有學生知道物體的面積在哪里,才能進一步學習面積的大小比較和計算。
總之,數學教師在課堂上要傳遞數學學習的溫暖,讓學生在學習過程感受求聯思維,在橫向處、縱向處和生長處體會數學知識的前后聯系、數學知識與生活情境的聯系、數學知識用不同表征方式的聯系、數學知識與其他學科之間的聯系等,才能在攀登數學知識的海洋中學會用求聯思維解決新問題。
作者簡介:田秀云(1979—),本科學歷,中小學一級教師,從事小學數學教學工作。