













摘 要:旨在驗(yàn)證牛INTS11基因在成肌細(xì)胞中的功能作用,通過(guò)生物信息學(xué)分析探討INTS11的CDS區(qū)序列及其編碼蛋白的特征,并使用不同分子試驗(yàn)技術(shù)驗(yàn)證其在牛成肌細(xì)胞增殖過(guò)程中發(fā)揮的作用。本研究對(duì)牛INTS11基因序列與其他物種進(jìn)行同源性對(duì)比并構(gòu)建生物進(jìn)化樹(shù),對(duì)其編碼蛋白進(jìn)行理化性質(zhì)和功能結(jié)構(gòu)分析以及亞細(xì)胞定位。并以體外分離培養(yǎng)的3月齡健康胎牛成肌細(xì)胞為試驗(yàn)材料,克隆成肌細(xì)胞中INTS11的全部CDS區(qū)序列,構(gòu)建INTS11的過(guò)表達(dá)載體并設(shè)計(jì)基因的干擾序列,通過(guò)CCK8、Edu、RT-qPCR等技術(shù)探究其對(duì)成肌細(xì)胞增殖的影響。生物信息分析結(jié)果表明,INTS11位于16號(hào)染色體上,CDS區(qū)序列全長(zhǎng)為1800bp,具有MBL-foldmetallo-hydro和β-CASP基序兩個(gè)功能結(jié)構(gòu)域,屬于非跨膜蛋白,且細(xì)胞定位主要分布于細(xì)胞質(zhì)。在成肌細(xì)胞中轉(zhuǎn)染pcDNA3.1-INTS11質(zhì)粒,結(jié)果顯示在72~96h時(shí)試驗(yàn)組的成肌細(xì)胞比對(duì)照組的增殖速度顯著增加(Plt;0.05);Edu試驗(yàn)發(fā)現(xiàn)陽(yáng)性細(xì)胞數(shù)目顯著增加(Plt;0.05);RT-qPCR結(jié)果表明增殖標(biāo)志因子CDK2、CYCLIND1的mRNA表達(dá)水平與對(duì)照組相比顯著上升(Plt;0.05)。轉(zhuǎn)入干擾序列后,細(xì)胞增殖速度顯著下降(Plt;0.05),同時(shí)增殖標(biāo)志因子CDK2、cyclin D1的mRNA表達(dá)水平與對(duì)照組相比顯著下降(Plt;0.05)。本研究預(yù)測(cè)了INTS11在家養(yǎng)動(dòng)物中的保守性,并且INTS11蛋白具有兩個(gè)功能結(jié)構(gòu)域,發(fā)現(xiàn)其通過(guò)介導(dǎo)CDK2、CYCLIND1的mRNA轉(zhuǎn)錄促進(jìn)牛成肌細(xì)胞增殖,其結(jié)果完善了調(diào)控骨骼肌的基因網(wǎng)絡(luò),為后序探討調(diào)控骨骼肌生長(zhǎng)機(jī)制提供理論支持。
關(guān)鍵詞:INTS11;成肌細(xì)胞;細(xì)胞增殖;過(guò)表達(dá); 干擾
中圖分類號(hào):S823.2
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):0366-6964(2024)07-2927-13
收稿日期:2023-11-01
基金項(xiàng)目:中國(guó)農(nóng)業(yè)科學(xué)院創(chuàng)新工程(ASTIP-IASO3);國(guó)家肉牛牦牛產(chǎn)業(yè)技術(shù)體系崗位科學(xué)家項(xiàng)目(CARS-37)
作者簡(jiǎn)介:王子巖(1998-),女,吉林人,碩士,主要從事動(dòng)物遺傳育種與繁殖研究,E-mail:wangziyan1023@126.com
*通信作者:李俊雅,主要主要從事動(dòng)物遺傳育種與繁殖研究,E-mail:Lijunya@caas.cn
INTS11Promotes the Proliferation of Bovine Myoblasts by Mediating the Transcription
of CDK2and CYCLIND1
WANGZiyan1,2,WANGYahui2,WUTianyi2,GAO Chen2,DUZhenwei2,GEFei2,
ZHANGXiaobei1,2,ZHAOWenxuan2,ZHANGLupei2,GAOHuijiang2,
DONGHuansheng1,LIJunya2*
(1.College of Animal Science and Technology,Qingdao Agricultural University,
Qingdao266000,China; 2.Institute of Animal Sciences,
Chinese Academy of Agricultural Sciences,Beijing100193,China)
Abstract:The study aimed to verify the functional role of bovine INTS11gene in myogenic cells,explore the sequence of the CDS region of INTS11and the characteristics of its encoded protein by bioinformatics analysis,and verify its role in the proliferation process of bovine myogenic cells using different molecular test techniques.The bovine INTS11gene sequence was compared with other species.This involved the construction of aphylogenetic tree and the examination of the physicochemical properties,functional structure,and subcellular localization of the encoded protein.The test material comprised3-month-old healthy fetal bovine myoblasts isolated and cultured in vitro.The sequences of the coding sequence(CDS)region of INTS11in myoblasts were cloned.An overexpression vector of INTS11was constructed,and interfering sequences of the gene were designed.This was done in order to investigate its effect on the proliferation of myoblasts by CCK8,Edu,RT-qPCR and other techniques.Bioinformatic analysis showed that INTS11had aCDS region of1800bp,two functional domains(MBL-foldmetallo-hydro and β-CASP motif),which belonged to the non-transmembrane proteins and the cellular localization was mainly distributed in the cytoplasm.Transfection of pcDNA3.1-INTS11plasmid showed that the proliferation rate of myoblasts in the test group was significantly increased compared with that in the control group at72-96h(Plt;0.05); Edu assay revealed asignificant increase in the number of positive cells(Plt;0.05); and the RT-qPCR results showed that the mRNA expression levels of proliferation marker factors CDK2and CYCLIND1were significantly increased(Plt;0.05)compared with that in the control group.After transferring the interference sequence,the cell proliferation rate was significantly decreased(Plt;0.05)and the number of positive cells was significantly reduced(Plt;0.05),while the mRNA expression levels of proliferation marker factors CDK2and CYCLIND1were significantly decreased(Plt;0.05)compared with the control group.In this study,the conservation of INTS11was predicted in the domesticated animals,and that INTS11protein has two functional structural domains,and it promotes the proliferation of bovine myoblasts by mediating the transcription of CDK2and CYCLIND1.This research has perfected the gene network regulating skeletal muscle growth,provided theoretical support for further exploration of the regulating mechanisms of skeletal muscle growth in the post-sequence.
Key words:INTS11; myoblast; cell proliferation; overexpression; interference
*Corresponding author:LI Junya,E-mail:Lijunya@caas.cn
骨骼肌作為哺乳動(dòng)物最大的組織,約占總體的60%,對(duì)胴體重、產(chǎn)肉率[1]等有著重要的影響。骨骼肌的生長(zhǎng)發(fā)育主要分為兩個(gè)階段,一是在胚胎發(fā)生期間骨骼肌的纖維數(shù)量已經(jīng)確定[2];二在動(dòng)物出生后,其肌纖維數(shù)量基本保持在恒定狀態(tài)[3],肌肉的生長(zhǎng)主要依賴于肌纖維體積增加和肌節(jié)增長(zhǎng)[4]。骨骼肌肌纖維的生長(zhǎng)過(guò)程包括成肌細(xì)胞的增殖、分化并融合成多核肌管[5]、以及出生后骨骼肌肌纖維增大增粗的生物發(fā)生[6]。研究證明,骨骼肌纖維生長(zhǎng)是一個(gè)十分復(fù)雜且精確的基因調(diào)控過(guò)程,并不是單一基因決定的。目前認(rèn)為,以MyoD、MyoG、Myf5、MRF4、MEF2等肌特異性轉(zhuǎn)錄因子調(diào)控為主[7],lncRNA和信息傳導(dǎo)途徑以及其他調(diào)控基因[8]構(gòu)成的基因調(diào)控網(wǎng)絡(luò)共同調(diào)控骨骼肌的生長(zhǎng)發(fā)育。因此本研究以影響胚胎期成肌細(xì)胞生長(zhǎng)發(fā)育的基因?yàn)檠芯恐攸c(diǎn),探討其對(duì)生物育種提高肉牛產(chǎn)肉率的重要意義。
隨著基因分型技術(shù)的發(fā)展,大量的GWAS研究在肉牛已經(jīng)大規(guī)模開(kāi)展,但是由于不同模型計(jì)算效力等問(wèn)題,存在大量假陽(yáng)性結(jié)果,且得到驗(yàn)證的基因數(shù)量較少。研究人員使用GWAS-RRM模型對(duì)808頭華西牛的GWAS分析結(jié)果顯示ARS-BFGL-NGS-BFGL-56551位點(diǎn)與華西牛的體重性狀顯著相關(guān),并通過(guò)基因注釋到INTS11作為影響肉牛骨骼肌生長(zhǎng)發(fā)育的關(guān)鍵功能候選基因[9]。INTS11是INT的重要組成成員[10],目前的研究表明INT是至少由15個(gè)亞基組成的多亞基復(fù)合體[3],研究人員發(fā)現(xiàn)INT在轉(zhuǎn)錄調(diào)控[11]和基因組[11-12]維護(hù)中扮演著關(guān)鍵角色。前期關(guān)于INT家族的ChIP-seq研究表明,INT與大量蛋白質(zhì)編碼基因的啟動(dòng)子相關(guān),并在含有RNA聚合酶II的基因中顯著富集[13]。INT復(fù)合體具有與RNA聚合酶II末端結(jié)構(gòu)域CTD相似的結(jié)構(gòu)[14],可以穩(wěn)定結(jié)合并相互作用募集到snRNA基因的啟動(dòng)子上,其中整合子裝載在啟動(dòng)子處的RNA聚合酶II上與它一起沿著基因移動(dòng),通過(guò)識(shí)別轉(zhuǎn)錄物末端的3′端結(jié)構(gòu)切割新生的初級(jí)轉(zhuǎn)錄物[15],進(jìn)而維持基因轉(zhuǎn)錄的連續(xù)性[16]。INT對(duì)基因表達(dá)的調(diào)控還涉及調(diào)節(jié)RNA聚合酶II的活性、輔助mRNA剪切以及信號(hào)通路的激活。INTS11是INT復(fù)合體的關(guān)鍵亞基,與INTS9和INTS4一起形成INT的核心催化配合物“裂解模塊”[17],協(xié)調(diào)發(fā)揮復(fù)合體的功能作用。綜上,INTS11對(duì)基因的轉(zhuǎn)錄表達(dá)和細(xì)胞功能具有重要調(diào)控作用,INTS11對(duì)牛骨骼肌生長(zhǎng)發(fā)育的調(diào)控卻鮮有報(bào)道。
基于INTS11基因在基因轉(zhuǎn)錄過(guò)程中的關(guān)鍵作用,本研究通過(guò)對(duì)INTS11基因進(jìn)行種屬間保守性分析和結(jié)構(gòu)功能預(yù)測(cè),并構(gòu)建INTS11過(guò)表達(dá)載體和干擾序列驗(yàn)證INTS11基因的過(guò)表達(dá)和沉默效果,以期為后續(xù)研究肉牛骨骼肌生長(zhǎng)發(fā)育的調(diào)控網(wǎng)絡(luò)和分子機(jī)制奠定基礎(chǔ)。
1 材料與方法
1.1 試驗(yàn)動(dòng)物
本試驗(yàn)使用的試驗(yàn)動(dòng)物來(lái)自2~3月齡荷斯坦牛胎兒,將包裹著羊水且羊膜完整的牛胎兒從母牛子宮中取出后,于4 ℃環(huán)境中放置,并快速送回試驗(yàn)。
1.2 試驗(yàn)方法
1.2.1 牛INTS11蛋白質(zhì)生物信息學(xué)分析
根據(jù)NCBI網(wǎng)站下載基因和蛋白質(zhì)的序列信息,通過(guò)MEGA7.0軟件對(duì)不同物種間的基因序列進(jìn)行同源性對(duì)比并繪制系統(tǒng)進(jìn)化樹(shù),通過(guò)在線軟件ProtParam、ProtScale、SOPMA、PHYRE2、SignalP-4.1、NetPhos3.1分別分析牛INTS11蛋白的理化性質(zhì)、二級(jí)結(jié)構(gòu)、三級(jí)結(jié)構(gòu)、亞細(xì)胞定位、信號(hào)肽和磷酸化、糖基化位點(diǎn)預(yù)測(cè)。
1.2.2 牛成肌細(xì)胞分離與純化
將牛子宮用75%的酒精沖洗后,放置于無(wú)菌環(huán)境中剪破羊膜,取出胎兒并用酒精噴洗。剪開(kāi)胎兒背部皮膚,使用眼科剪刀、鑷子分離出背部肌肉,用含1%青鏈霉素的PBS沖洗兩遍后放入無(wú)菌平皿中,在超凈臺(tái)把組織表面的筋膜和血管剪掉,取黃豆大小的組織塊用含1%PBS沖洗兩遍,放入0.1%膠原酶Ⅳ中剪成肉糜狀態(tài)看不到組織顆粒,搖床中震蕩45min,每15min拿起來(lái)上下顛倒,通過(guò)100nm尼龍網(wǎng)篩并收集濾液,1200r·min-1離心3min后棄上清,用配好的完全培養(yǎng)基(20%FBS+80%DMEM-H)混勻接種在培養(yǎng)皿中,2h后把培養(yǎng)基轉(zhuǎn)移到新的培養(yǎng)皿中以篩選細(xì)胞,待細(xì)胞達(dá)80%匯合度時(shí),使用凍存液(10%DMSO+20%FBS+70%DMEM-H)將細(xì)胞凍存,并保存于液氮中。
1.2.3 成肌細(xì)胞誘導(dǎo)分化
將成肌細(xì)胞接種在細(xì)胞培養(yǎng)板中,加入完全培養(yǎng)基進(jìn)行培養(yǎng),待細(xì)胞匯合度至90%后,更換分化培養(yǎng)基(2%HI+98%DMEM-H)連續(xù)培養(yǎng)4d,每隔24h更換一次培養(yǎng)基,4d后可在倒置顯微鏡下觀察細(xì)胞形成明顯的肌管。
1.2.4 INTS11基因CDS區(qū)克隆及載體構(gòu)建
根據(jù)NCBI中牛的INTS11基因mRNA序列(登錄號(hào):XM-021089863.1),設(shè)計(jì)INTS11基因的上下游引物、定量引物和上下游帶有Hind III和Kpn I限制性內(nèi)切酶位點(diǎn)的特異性引物(表1)。以成肌細(xì)胞的cDNA為模板通過(guò)PCR擴(kuò)增法擴(kuò)增INTS11基因的CDS區(qū)序列并純化。以pcDNA3.1為載體與INTS11基因片段連接,將重組質(zhì)粒轉(zhuǎn)入感受態(tài)細(xì)胞中表達(dá),14h后挑取陽(yáng)性單克隆送生工生物公司對(duì)菌液進(jìn)行PCR鑒定。
1.3 過(guò)表達(dá)載體以及干擾序列轉(zhuǎn)染
當(dāng)細(xì)胞匯合度為80%時(shí)使用lipofectanine3000轉(zhuǎn)染試劑盒將質(zhì)粒轉(zhuǎn)染到成肌肉細(xì)胞中,每孔3μL lipo3000,1000ng質(zhì)粒,培養(yǎng)24h后檢測(cè)過(guò)表達(dá)基因?qū)Τ杉〖?xì)胞的影響。
1.4 RT-qPCR
取細(xì)胞融合度達(dá)到80%的成肌細(xì)胞,使用Trizol提取法提取細(xì)胞RNA。具體步驟如下:參照Primescript?RT Reagent Kit(TaKaRa反轉(zhuǎn)錄試劑盒)說(shuō)明書(shū),合成cDNA。按照SYBR@FAST qPCR Kit Master Mix(2×)Universal熒光定量試劑盒(諾維贊)說(shuō)明書(shū),以GAPDH為內(nèi)參基因進(jìn)行熒光定量PCR。反應(yīng)體系體積為10μL:Mix5μL,cDNA1μL,上、下游引物(10mol·L-1)各0.25μL,ddH2O3.5μL(引物見(jiàn)表2)。每個(gè)樣品重復(fù)3次。
1.5 CCK8試驗(yàn)
消化F1代的成肌細(xì)胞,通過(guò)血細(xì)胞計(jì)數(shù)板計(jì)數(shù),傳代到96孔板,每孔2000個(gè)細(xì)胞,待細(xì)胞完全貼壁,每孔加入10μL CCK-8試劑(南京諾唯贊生物科技有限公司),5%CO2,37 ℃下培養(yǎng)2h,使用酶標(biāo)儀在450nm的波長(zhǎng)下測(cè)吸光度。轉(zhuǎn)染步驟參照“1.3”按照細(xì)胞數(shù)量等比減少轉(zhuǎn)染試劑和質(zhì)粒濃度。對(duì)照組NC和試驗(yàn)組各轉(zhuǎn)染6個(gè)孔,分別在0、24、48、72、96h時(shí)對(duì)成肌細(xì)胞進(jìn)行CCK8檢測(cè)。
1.6 Edu試驗(yàn)
消化F1代的成肌細(xì)胞,傳代到12孔板,當(dāng)細(xì)胞匯合度達(dá)到50%時(shí),轉(zhuǎn)染質(zhì)粒,5%CO2,37℃下培養(yǎng)24h,對(duì)成肌細(xì)胞進(jìn)行Edu檢測(cè),具體試驗(yàn)步驟參照Cell Light EdU Apollo488In Vitro Kit說(shuō)明書(shū)。
1.7 數(shù)據(jù)統(tǒng)計(jì)與分析
采用SPSS軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行T檢驗(yàn)和方差分析,P<0.05表示差異顯著,P>0.05表示差異不顯著。數(shù)據(jù)的可視化使用Graphpad prism8軟件,可視為平均值,誤差線代表平均值的標(biāo)準(zhǔn)誤差。
2 結(jié) 果
2.1 INTS11保守性分析
2.1.1 INTS11蛋白的理化性質(zhì)
對(duì)牛INTS11的理化性質(zhì)分析顯示,INTS11基因共編碼599個(gè)氨基酸,相對(duì)分子質(zhì)量為67601.43,總原子數(shù)為9513。蛋白質(zhì)分子式C3017H4773N823O861S39,理論等電點(diǎn)為8.27。氨基酸組成結(jié)果顯示,帶負(fù)電殘基總數(shù)68個(gè),帶正電殘基總數(shù)72個(gè),不穩(wěn)定指數(shù)為31.71,脂溶系數(shù)為86.24,細(xì)胞的半衰期為30h;總平均親水性為-0.196。用ProtScale軟件預(yù)測(cè)蛋白質(zhì)的疏水性,表明組成INTS11的氨基酸中親水性氨基酸所占比例較大,且沒(méi)有明顯的疏水區(qū)域(圖1)。
2.1.2 INTS11的保守性分析
用MEGA11軟件進(jìn)行同源性分析并繪制系統(tǒng)進(jìn)化樹(shù),發(fā)現(xiàn)INTS11序列與水牛的親緣關(guān)系最近為97%,與野雞的親緣關(guān)系最遠(yuǎn)為49.1%(圖2)。
2.2 INTS11結(jié)構(gòu)分析
2.2.1 INTS11的磷酸化位點(diǎn)和糖基化位點(diǎn)預(yù)測(cè)結(jié)果
利用在線軟件Netphos3.1對(duì)INTS11潛在的磷酸化位點(diǎn)進(jìn)行分析,結(jié)果表明,該蛋白有42個(gè)潛在的磷酸化位點(diǎn),分別為17個(gè)蘇氨酸、19個(gè)絲氨酸、6個(gè)酪氨酸。分別用在線軟件NetoGlyc4.0和NetoGlyc1.0對(duì)INTS11潛在的O-糖基化位點(diǎn)和N-糖基化位點(diǎn)進(jìn)行分析,表明該蛋白有4個(gè)潛在的O-糖基化位點(diǎn),分別位于202、204、205、208位氨基酸處;8個(gè)N-糖基化潛在位點(diǎn),分別位于第28、119、298、343、409、434、440、489位氨基酸處(圖3)。
2.2.2 INTS11蛋白功能結(jié)構(gòu)域
利用SignalP4.1Server在線軟件預(yù)測(cè)發(fā)現(xiàn)INTS11的氨基酸序列不存在信號(hào)肽(圖4)。用PSORT軟件分析INTS11蛋白的亞細(xì)胞定位發(fā)現(xiàn),INTS11主要分布于細(xì)胞質(zhì)中,占總體的65.2%,細(xì)胞骨架占17.4%,細(xì)胞核中占13%,過(guò)氧化酶酶體占4.3%。利用NCBI在線網(wǎng)站預(yù)測(cè)INTS11蛋白功能結(jié)構(gòu)域,發(fā)現(xiàn)INTS11序列的第4~444位氨基酸具有MBL-foldmetallo-hydro結(jié)構(gòu)域,屬于MBL折疊金屬水解酶超家族的成員。第1501~1689位氨基酸構(gòu)成保守的β-CASP基序蛋白結(jié)構(gòu)域,該結(jié)構(gòu)位于MBL結(jié)構(gòu)域上方的單獨(dú)結(jié)構(gòu)域,其本身由N端和C端組成,該結(jié)構(gòu)域含有保守氨基酸(圖5)。
2.2.3 INTS11蛋白的高級(jí)結(jié)構(gòu)
利用在線軟件SOPMA預(yù)測(cè)INTS11的二級(jí)結(jié)構(gòu),結(jié)果顯示,該蛋白主要以α-螺旋和延伸鏈以及無(wú)規(guī)則卷曲組成,β-轉(zhuǎn)角少量分布(圖6)。其中α-螺旋、延伸鏈和無(wú)規(guī)則卷曲有566個(gè)氨基酸共占94.49%;β-轉(zhuǎn)角只有33個(gè)氨基酸占總體的5.51%(表3)。利用PHYRE2在線軟件預(yù)測(cè)INTS11的三級(jí)結(jié)構(gòu),并構(gòu)建三維模型(圖7)。
2.3 牛成肌細(xì)胞鑒定
2.3.1 牛成肌細(xì)胞形態(tài)觀察
肌肉組織經(jīng)膠原酶和胰蛋白酶消化,再經(jīng)過(guò)差速貼壁純化后,能夠獲得大量、純度較高的肌肉細(xì)胞。純化后的細(xì)胞繼續(xù)培養(yǎng)24h,大量細(xì)胞都能夠完全貼壁生長(zhǎng),此時(shí)細(xì)胞形態(tài)呈橢圓形、細(xì)胞較小;繼續(xù)培養(yǎng)48h后,細(xì)胞形態(tài)逐漸展開(kāi),呈明顯的梭形、折光性強(qiáng)、有明顯的兩極。
2.3.2 成肌細(xì)胞誘導(dǎo)分化結(jié)果
成肌細(xì)胞匯合度達(dá)到80%以上后,加入分化培養(yǎng)基繼續(xù)培養(yǎng)進(jìn)行誘導(dǎo)分化;結(jié)果顯示,隨著分化時(shí)間的增加,成肌細(xì)胞之間逐漸發(fā)生相互融合,形成長(zhǎng)條形肌管;細(xì)胞融合后,多個(gè)細(xì)胞核發(fā)生聚集,分布在肌管中央;平行排列的肌管之間也能夠發(fā)生相互融合,最終形成更粗的肌管,并利用免疫熒光染色對(duì)肌管的MYH3蛋白進(jìn)行染色(圖8)。
2.3.3 INTS11基因CDS區(qū)克隆以及過(guò)表達(dá)載體構(gòu)建
以成肌細(xì)胞得到cDNA為模板,設(shè)計(jì)INTS11基因的上、下游引物(表1),進(jìn)行PCR及凝膠電泳,發(fā)現(xiàn)在1800bp處有一條與預(yù)期大小相一致的條帶(圖9A),分別將有正確基因片段的cDNA和pcDNA3.1質(zhì)粒載體進(jìn)行雙酶切并連接,通過(guò)熱激法將其轉(zhuǎn)入DH5α體感受態(tài)細(xì)胞中,對(duì)構(gòu)建成功的載體進(jìn)行測(cè)序,分別從正向和反向測(cè)序(圖9B)。測(cè)序結(jié)果與INTS11基因CDS區(qū)序列完全一致,表明INTS11基因的過(guò)表達(dá)載體構(gòu)建成功,命名為pcDNA3.1-INTS11。
2.3.4 INTS11基因過(guò)表達(dá)促進(jìn)牛成肌細(xì)胞增殖
為研究INTS11對(duì)成肌細(xì)胞增殖過(guò)程的影響,把構(gòu)建成功的pcDNA-INTS11轉(zhuǎn)染到成肌細(xì)胞中,分別進(jìn)行CCK8、Edu和熒光定量PCR試驗(yàn)。結(jié)果發(fā)現(xiàn)與對(duì)照組相比,試驗(yàn)組細(xì)胞的INTS11基因表達(dá)量顯著上升(圖10A),可以確定轉(zhuǎn)染成功。CCK8結(jié)果發(fā)現(xiàn)試驗(yàn)組的72~96h增殖速度顯著高于對(duì)照組(圖10B),可初步認(rèn)定過(guò)表達(dá)INTS11能夠明顯促進(jìn)成肌細(xì)胞增殖(Plt;0.05)。EdU試驗(yàn)陽(yáng)性細(xì)胞率顯著升高(圖10D,Plt;0.05)。熒光定量試驗(yàn)結(jié)果表明與對(duì)照組相比轉(zhuǎn)染pcDNA-INTS11的成肌細(xì)胞中與細(xì)胞增殖相關(guān)的標(biāo)志性基因CDK2、CYCLIND1的mRNA表達(dá)量顯著性增加(Plt;0.05,圖10E)。
2.3.5 干擾INTS11抑制細(xì)胞增殖
結(jié)果顯示,使用3條siRNA干擾INTS11基因時(shí),選擇干擾效率最高的si-bta-INTS11-002序列為接下來(lái)試驗(yàn)的干擾序列。結(jié)果顯示在轉(zhuǎn)染si-bta-INTS11-002后,72~96h試驗(yàn)組細(xì)胞增殖速度顯著下降;CDK2、CYCLIND1mRNA表達(dá)顯著降低(Plt;0.05,圖11)。
3 討 論
INTS11屬于INT蛋白家族核心模塊的組成成員,是一種具有高度保守性的蛋白,具有核酸內(nèi)切酶活性[18]。目前對(duì)INTS11的功能研究主要集中在基因的轉(zhuǎn)錄機(jī)制以及在RNA的產(chǎn)生和加工、核酸代謝中發(fā)揮的作用[19]。但關(guān)于INTS11基因?qū)趋兰〖?xì)胞生長(zhǎng)發(fā)育的影響目前停留在生物信息學(xué)分析階段,其在骨骼肌細(xì)胞中的功能作用還鮮見(jiàn)報(bào)道。
本研究以體外分離的成肌細(xì)胞為試驗(yàn)對(duì)象,克隆出INTS11基因完整CDS序列,對(duì)其編碼的氨基酸和蛋白質(zhì)的結(jié)構(gòu)和生物學(xué)功能進(jìn)行了綜合分析,通過(guò)對(duì)INTS11基因進(jìn)行不同物種間的同源性比對(duì)分析,發(fā)現(xiàn)普通牛與水牛的親緣關(guān)系最近,與野雞的親緣關(guān)系最遠(yuǎn),符合生物進(jìn)化特征,并且具有廣泛的同源性,說(shuō)明INTS11對(duì)動(dòng)物生長(zhǎng)發(fā)育過(guò)程的基因調(diào)控具有不可替代的作用。在INTS11蛋白結(jié)構(gòu)中預(yù)測(cè)的MBL-foldmetallo-hydro結(jié)構(gòu)域,屬于MBL折疊金屬水解酶超家族的成員[20],例如,人類5′-核酸外切酶(SNM1A)具有5′-3′外切核糖核溶解和核內(nèi)裂解活性,可以催化核糖核酸去除tRNA前體的3′延伸[21]。β-CASP基序的蛋白結(jié)構(gòu)域,其主要組成是水解酶和相關(guān)蛋白質(zhì),是位于MBL結(jié)構(gòu)域上方的單獨(dú)結(jié)構(gòu)域,本身由N端和C端組成,該結(jié)構(gòu)域含有保守氨基酸,可以協(xié)調(diào)金屬離子用于催化[22],預(yù)測(cè)該結(jié)構(gòu)域作為RNA特異性內(nèi)切核酸酶起作用[23],可以調(diào)節(jié)INTS11的催化活性。本研究發(fā)現(xiàn),INTS11基因的序列具有保守性,且其蛋白屬于無(wú)信號(hào)識(shí)別功能的非分泌蛋白,主要在細(xì)胞質(zhì)內(nèi)發(fā)揮作用,這為后續(xù)INTS11的功能驗(yàn)證提供了理論基礎(chǔ)和研究方向。
細(xì)胞增殖是分化的前提[24],促進(jìn)成肌細(xì)胞增殖對(duì)骨骼肌纖維[25]的生長(zhǎng)發(fā)育有積極意義。本研究通過(guò)構(gòu)建INTS11的過(guò)表達(dá)載體和干擾序列并分別轉(zhuǎn)染到牛的成肌細(xì)胞中,發(fā)現(xiàn)INTS11基因在成肌細(xì)胞中過(guò)表達(dá)后促進(jìn)增殖基因CDK2、CYCLIND1的表達(dá)。反之,當(dāng)對(duì)成肌細(xì)胞轉(zhuǎn)染干擾序列時(shí),成肌細(xì)胞增殖效率下降,同時(shí)CDK2、CYCLIND1基因的表達(dá)量下降。以往關(guān)于INTS11的研究集中在基因表達(dá)調(diào)控中的分子機(jī)制,一方面INTS11可以與RNA聚合酶II進(jìn)行互作參與基因表達(dá)的調(diào)控[26];另一方面INTS11的濃度改變可以啟動(dòng)某些信號(hào)通路,如MAPK通路等[27]。果蠅模型研究發(fā)現(xiàn),敲低果蠅INTS11表達(dá)導(dǎo)致果蠅運(yùn)動(dòng)能力降低[28]。一些報(bào)道稱,RNAi沉默INTS11可以導(dǎo)致UsnRNA前體3′端處理異常,產(chǎn)生大量的UsnRNA錯(cuò)誤剪切[29]。3′端非編碼區(qū)富含非典型polyA信號(hào)和GC富集的基因轉(zhuǎn)錄終止依賴于INT復(fù)合體[30],敲低INTS11導(dǎo)致這些基因的轉(zhuǎn)錄延長(zhǎng)[31],并表現(xiàn)出異常的RNA聚合酶II占據(jù)模式以及異常的組蛋白修飾[32]等。在人類的癌細(xì)胞(EAL)研究中發(fā)現(xiàn)INTS11可以激活Notch靶基因上調(diào)而導(dǎo)致癌細(xì)胞增殖,將INTS11敲除導(dǎo)致EAC細(xì)胞生長(zhǎng)停滯甚至凋亡[33],缺失INTS11蛋白結(jié)構(gòu)的細(xì)胞系在U1和U2初級(jí)轉(zhuǎn)錄物的加工中表現(xiàn)出明顯的缺陷[34]。在小鼠體內(nèi)發(fā)現(xiàn),INTS11基因?qū)π∈蟮闹痉只嘘P(guān)鍵作用[35],在人類的免疫細(xì)胞中發(fā)現(xiàn)INTS11缺失導(dǎo)致造血系統(tǒng)中造血祖細(xì)胞的細(xì)胞周期阻滯[36],進(jìn)而導(dǎo)致免疫細(xì)胞的功能障礙。但在肌肉細(xì)胞中INTS11發(fā)揮的功能和分子機(jī)制還鮮見(jiàn)報(bào)道。本研究發(fā)現(xiàn)INTS11過(guò)表達(dá)或干擾時(shí)參與細(xì)胞調(diào)控的基因(CYCLIND1、CDK2)[37]分別上調(diào)和下調(diào),其中CYCLIND1能促進(jìn)細(xì)胞周期G1期的細(xì)胞增殖[38-39]。CDK2是一種細(xì)胞周期調(diào)節(jié)因子,它通過(guò)與CCNA2形成復(fù)合體來(lái)促進(jìn)細(xì)胞周期從G1期向S期過(guò)渡[40-41],從而調(diào)節(jié)細(xì)胞周期的進(jìn)展。因此,可以認(rèn)為INTS11可能通過(guò)Notch信號(hào)通路作用于細(xì)胞增殖周期的靶基因促進(jìn)成肌細(xì)胞增殖。
4 結(jié) 論
本研究分析了INTS11在家養(yǎng)動(dòng)物中的保守性和牛INTS11蛋白的序列信息,預(yù)測(cè)到INTS11具有MBL-foldmetallo-hydro和β-CASP基序兩個(gè)功能結(jié)構(gòu)域,初步證實(shí)INTS11通過(guò)介導(dǎo)CDK2和CYCLIND1的轉(zhuǎn)錄促進(jìn)牛成肌細(xì)胞增殖。但關(guān)于INTS11在牛個(gè)體水平上如何調(diào)節(jié)骨骼肌生長(zhǎng)發(fā)育的機(jī)制需更多試驗(yàn)驗(yàn)證。本研究為探究INTS11的基因調(diào)控機(jī)制和肉牛骨骼肌發(fā)育,提供了試驗(yàn)基礎(chǔ)和理論參考。
參考文獻(xiàn)(References):
[1]ZHAO TT,ZHAO R,YI XD,et al.METTL3promotes proliferation and myogenic differentiation through m6A RNA methylation/YTHDF1/2signaling axis in myoblasts[J].Life Sci,2022,298:120496.
[2]HOH JA Y.Developmental,physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles[J].J Comp Physiol B,2023,193(4):355-382.
[3]MENG QW,LI JW,WANG CS,et al.Biological function of resveratrol and its application in animal production:a review[J].J Anim Sci Biotechnol,2023,14(1):25.
[4]SONG CC,YANG ZX,DONG D,et al.miR-483inhibits bovine myoblast cell proliferation and differentiation via IGF1/PI3K/AKT signal pathway[J].J Cell Physiol,2019,234(6):9839-9848.
[5]CHEN MJ,WEI XF,SONG MM,et al.Circular RNA circMYBPC1promotes skeletal muscle differentiation by targeting MyHC[J].Mol Ther Nucleic Acids,2021,24:352-368.
[6]LUO W,LIN ZT,CHEN JH,et al.TMEM182interacts with integrin beta1and regulates myoblast differentiation and muscle regeneration[J].J Cachexia Sarcopenia Muscle,2021,12(6):1704-1723.
[7]MO MJ,ZHANG ZH,WANG XT,et al.Molecular mechanisms underlying the impact of muscle fiber types on meat quality in livestock and poultry[J].Front Vet Sci,2023,10:1284551.
[8]KONG DL,HE M,YANG L,et al.MiR-17and miR-19cooperatively promote skeletal muscle cell differentiation[J].Cell Mol Life Sci,2019,76(24):5041-5054.
[9]DU LL,DUAN XH,AN BX,et al.Genome-wide association study based on random regression model reveals candidate genes associated with longitudinal data in Chinese simmental beef cattle[J].Animals(Basel),2021,11(9):2524.
[10]KUANG HZ,LI YL,WANG YX,et al.A homozygous variant in INTS11links mitosis and neurogenesis defects to asevere neurodevelopmental disorder[J].Cell Rep,2023,42(12):113445.
[11]FONGANG B,WADOP YN,ZHU YJ,et al.Coevolution combined with molecular dynamics simulations provides structural and mechanistic insights into the interactions between the integrator complex subunits[J].Comput Struct Biotechnol J,2023,21:5686-5697.
[12]DOKANEHEIFARD S,GOMES DOS SANTOS H,VALENCIA MG,et al.BRAT1associates with INTS11/INTS9heterodimer to regulate key neurodevelopmental genes[J].bioRxiv,2023,8(10):552743.
[13]NIU QH,ZHANG TL,XU L,et al.Integration of selection signatures and multi-trait GWAS reveals polygenic genetic architecture of carcass traits in beef cattle[J].Genomics,2021,113(5):3325-3336.
[14]LIU L,YIN LQ,YUAN YH,et al.Developmental characteristics of skeletal muscle during the embryonic stage in Chinese Yellow Quail(Coturnix japonica)[J].Animals(Basel),2023,13(14):2317.
[15]SKAAR JR,F(xiàn)ERRIS AL,WU XL,et al.The integrator complex controls the termination of transcription at diverse classes of gene targets[J].Cell Res,2015,25(3):288-305.
[16]LAI F,GARDINI A,ZHANG AD,et al.Integrator mediates the biogenesis of enhancer RNAs[J].Nature,2015,525(7569):399-403.
[17]ALBRECHT TR,SHEVTSOV SP,WU YX,et al.Integrator subunit4is a‘symplekin-like’scaffold that associates with INTS9/11to form the Integrator cleavage module[J].Nucleic Acids Res,2018,46(8):4241-4255.
[18]HUANG HF,LIU JZ,YAO F,et al.The integrator complex subunit11is involved in the post-diapaused embryonic development and stress response of Artemia sinica[J].Gene,2020,741:144548.
[19]TEPE B,MACKE EL,NICETA M,et al.Bi-allelic variants in INTS11are associated with acomplex neurological disorder[J].Am JHum Genet,2023,110(5):774-789.
[20]HE LF,MA HH,SONG WH,et al.Arabidopsis COPT1copper transporter uses asingle histidine to regulate transport activity and protein stability[J].Int JBiol Macromol,2023,241:124404.
[21]YOSAATMADJA Y,BADDOCK HT,NEWMAN JA,et al.Structural and mechanistic insights into the Artemis endonuclease and strategies for its inhibition[J].Nucleic Acids Res,2021,49(6):9310-9326.
[22]GONZáLEZ LJ,BAHR G,GONZáLEZ MM,et al.In-cell kinetic stability is an essential trait in metallo-β-lactamase evolution[J].Nat Chem Biol,2023,19(9):1116-1126.
[23]WU YX,ALBRECHT TR,BAILLAT D,et al.Molecular basis for the interaction between Integrator subunits IntS9and IntS11and its functional importance[J].Proc Natl Acad Sci US A,2017,114(17):4394-4399.
[24]OSANA S,KITAJIMA Y,SUZUKI N,et al.Puromycin-sensitive aminopeptidase is required for C2C12myoblast proliferation and differentiation[J].J Cell Physiol,2021,236(7):5293-5305.
[25]SUN CS,KANNAN S,CHOI IY,et al.Human pluripotent stem cell-derived myogenic progenitors undergo maturation to quiescent satellite cells upon engraftment[J].Cell Stem Cell,2022,29(4):610-619.e5.
[26]DASILVA LF,BLUMENTHAL E,BECKEDORFF F,et al.Integrator enforces the fidelity of transcriptional termination at protein-coding genes[J].Sci Adv,2021,7(45):eabe3393.
[27]SHI L,SONG L,MAURER K,et al.IL-1Transcriptional Responses to Lipopolysaccharides Are Regulated by aComplex of RNA Binding Proteins[J].The Journal of Immunology,2020,204(5):1334-1344.
[28]ALBRECHT TR,WAGNER EJ.snRNA3′end formation requires heterodimeric association of integrator subunits[J].Mol Cell Biol,2012,32(6):1112-1123.
[29]WELSH SA,GARDINI A.Genomic regulation of transcription and RNA processing by the multitasking Integrator complex[J].Nature Reviews Molecular Cell Biology,2023,24(3):204-220.
[30]CIHLAROVA Z,KUBOVCIAK J,SOBOL M,et al.BRAT1links Integrator and defective RNA processing with neurodegeneration[J].Nat Commun,2022,13(1):5026.
[31]HUANG J,LIU XY,SUN YD,et al.An examination of the metal ion content in the active sites of human endonucleases CPSF73and INTS11[J].J Biol Chem,2023,299(4):103047.
[32]ZHANG P,SUI P,CHEN S,et al.INTS11regulates hematopoiesis by promoting PRC2function[J].Science Advances,2021,7(36):eabh1684.
[33]DUMAN ET,SITTE M,CONRADS K,et al.A single-cell strategy for the identification of intronic variants related to mis-splicing in pancreatic cancer[J].bioRxiv,2023,5(8):539836.
[34]SHERSHER E,LAHIRY M,ALVAREZ-TROTTA A,et al.NACK and INTEGRATOR act coordinately to activate notch-mediated transcription in tumorigenesis[J].Cell Commun,2021,19(1):96.
[35]SIMON M,MIKEC S,MORTON NM,et al.Genome-wide screening for genetic variants in polyadenylation signal(PAS)sites in mouse selection lines for fatness and leanness[J].Mamm Genome,2023,34(1):12-31.
[36]ZHANG P,SUI PP,CHEN S,et al.INTS11regulates hematopoiesis by promoting PRC2function[J].Sci Adv,2021,7(36):eabh1684.
[37]KALDIS P,ALEEM E.Cell cycle sibling rivalry:Cdc2versus Cdk2[J].Cell Cycle,2005,4(11):1491-1494.
[38]HE SY,CHEN M,LIN XL,et al.Triptolide inhibits PDGF-induced proliferation of ASMCs through G0/G1cell cycle arrest and suppression of the AKT/NF-κB/cyclinD1signaling pathway[J].Eur JPharmacol,2020,867:172811.
[39]WANG H,ZHANG Q,WANG BB,et al.miR-22regulates C2C12myoblast proliferation and differentiation by targeting TGFBR1[J].Eur JCell Biol,2018,97(4):257-268.
[40]ZHOU HY,WANG YC,WANG T,et al.CCNA2and NEK2regulate glioblastoma progression by targeting the cell cycle[J].Oncol Lett,2024,27(5):206.
[41]BROWN VE,MOORE SL,CHEN M,et al.CDK2regulates collapsed replication fork repair in CCNE1-amplified ovarian cancer cells via homologous recombination[J].NAR Cancer,2023,5(3):zcad039.
(編輯 郭云雁)