摘要:隨著腦科學計劃的推進,大腦相關研究已成為科研熱點,與其相關的神經調控是目前研究的前沿方向。相比傳統的神經調控手段,低強度聚焦超聲(LIFU)作為一種新興的神經調控技術,具有無創、可逆、可靶向大腦深層結構等優點,已被國內外學者廣泛研究,但關于LIFU神經調控的具體機制還不十分清晰,而機制的闡明對其在相關領域的應用具有指導意義。本文就近年來LIFU神經調控的作用機制的研究進展進行簡要綜述,并且簡要梳理了超聲在神經系統的應用,以期為超聲神經調控的后續基礎和臨床研究提供參考。
關鍵詞:低強度聚焦超聲;神經調控;作用機制;超聲
The mechanism and application prospect of low?intensity focused ultrasound in neuromodulation
CAO Jiazhi1, HUANG Lin2, LING Wenwu1
1Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, China; 2School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract: The proposal of the Brain Science Project has made brain-related research a hot topic, and its related neuromodulation is a frontier and hot topic of current research. Compared with traditional neuromodulation methods, Low Intensity Focused Ultrasound (LIFU), as an emerging neuromodulation technology, has the advantages of non-invasive, reversible, and targetable deep brain structures. It has been extensively studied by scholars at home and abroad. However, the specific mechanism of LIFU neuromodulation is not very clear, and the clarification of the mechanism has guiding significance for its application in related fields. This article briefly summarizes the research progress on the mechanism of LIFU neural modulation in recent years, and briefly outlines the application of ultrasound in the nervous system, aiming to provide references for the subsequent basic and clinical research on ultrasound neural modulation.
Keywords: low intensity focused ultrasound; neuromodulation; mechanism; ultrasound
腦科學計劃的提出使大腦相關研究成為熱點,而神經系統作為大腦功能的一部分,是腦科學計劃的重要組成部分,與其相關的神經調控是目前研究的前沿熱點方向。低強度聚焦超聲(LIFU)作為一種新興的神經調控手段,具有無創、可逆、可靶向大腦深層結構等優點,在神經調控領域研究受到廣泛關注。國內外學者對LIFU神經調控作用進行了廣泛的探索和研究,但關于LIFU神經調控的具體機制還不十分清晰,而機制的闡明對其在相關領域的應用具有指導意義。本文就近年來LIFU神經調控的作用機制的研究進展進行簡要綜述,并且簡要梳理了超聲在神經系統的應用,以期為超聲神經調控的后續基礎和臨床研究提供參考。
目前,神經系統的調控主要依賴電、磁、光、聲等物理、化學或生物手段,傳統的神經調控技術主要有深部腦刺激、經顱磁刺激、經顱直流電刺激和光遺傳學技術4種,其中深部腦刺激需要外科手術植入電極,由于空間位置等原因的限制不能進行多點刺激,并且在使用過程中會涉及到更換電池,增加了感染等風險[1];經顱磁刺激和經顱直流電刺激技術則是利用不同的原理將電流傳遞到特定的腦區改變神經元的興奮性從而實現神經調控,但是存在聚焦能力和刺激深度不足的缺點[2];光遺傳學技術需要有創植入纖維,尚未進入臨床應用[3]。
超聲波是一種壓力波,在組織中傳播時能夠傳遞能量,可以分為高強度超聲和低強度超聲。當超聲波的能量強度足夠高,持續時間足夠長時,過高的溫度將引發蛋白質變性、細胞壞死、組織凝固等效應,造成不可逆的腦組織損傷。獲得美國食品藥品監督管理局批準的高強度聚焦超聲便是利用熱效應永久性損傷特定部位組織的方式來達到臨床治療的目的。相比之下,LIFU在神經調控領域使用更為廣泛。
1 "超聲神經調控
超聲在神經調控領域的研究始于20世紀30年代,Harvey[4]首次報道了超聲刺激蛙的周圍神經系統引起了腓腸肌的運動,證明了超聲可以用于神經調控。20世紀50年代,有研究使用聚焦超聲照射貓的一側外側膝狀體,證明超聲可以可逆地調節貓的視覺皮層誘發電位[5]。此后,超聲作為一種可以調控神經系統的技術受到了國內外學者的關注,并且進行了大量的實驗,且取得了一些研究成果。近年來,超聲對神經系統的調控研究從早期的離體切片[6]逐步到麻醉[7]、清醒[8]的動物在體研究,從小動物實驗[9]、大型動物實驗[10]逐步到人體實驗[11],從簡單的腦電調節等[6]到行為調節[8]、高層次的認知調節(觸覺、溫度覺等的變化)[12]、學習記憶調節[13]。
2 "超聲神經調控機制
現有研究證據表明,超聲能夠對神經活動進行調節,但是其具體的調控機制仍未明確。國內外學者對LIFU神經調控的作用機制進行了相關探索并且提出了相應的假說。
2.1 "機械通道
超聲波是帶有能量的機械波,能對被輻射的物體施加壓力,被輻射的組織能夠隨著聲壓的變化壓縮和膨脹[14]。細胞膜具有流動性,有研究提出聲輻射力作用于嵌入細胞膜的機械敏感離子通道,增加了通道開放的可能性,繼而形成離子轉運等效應,從而改變神經元的活動[15, 16],這也是目前被研究最多和最廣泛接受的假說,已有較多實驗研究證實。有研究通過實驗觀察到了聚焦超聲作用下電壓門控鈉、鉀、鈣通道的激活作用[6, 17]。在離子通道機制的基礎上,有學者通過改造的機械敏感離子通道提高了超聲刺激神經元的敏感度,不表達改造離子通道的神經元則對超聲刺激無反應,首次實現了LIFU對神經元的精確控制[18]。有學者通過對線蟲進行基因干預,發現熱敏缺陷突變體的線蟲依然對LIFU敏感,而機械傳感缺陷突變體的線蟲對LIFU作用沒有反應,為超聲波通過機械作用的方式刺激神經元提供了證據[19]。
2.2 "空化效應
超聲波在組織傳遞的過程中,遇到組織中的液體時形成微氣泡,微氣泡被正壓壓縮,在負壓的時膨脹的現象稱為空化效應。根據振蕩幅度,空化效應可以分為穩定空化(微泡震蕩)和不穩定空化(微泡破裂)[20, 21],目前被認為是超聲波進行神經調控的重要機制之一。在生物組織內,空化作用是在某個閾值以上實現的,該閾值取決于聲波發射頻率、溫度和壓力等參數,與之關系最密切的參數是聲輻射力。足夠的聲輻射力使得氣體顆粒撞擊細胞膜的磷脂雙分子層,繼而引起膜的擴張和收縮[22],使得膜的構象發生變化從而產生電容電流,或者產生新的離子運輸通道,或者激活膜上的機械敏感離子通道,改變其興奮性[23]。有學者提出了膜內空化的概念,在BLS模型中,雙層膜能夠直接將聲能轉化為細胞水平的機械應力和應變,從而影響離子通道的狀態[24]。
2.3 "熱效應
LIFU所引起的組織溫度變化很小,通常不超過0.1℃[25],廣泛認為此微小的溫度變化不會對腦組織產生影響。盡管如此,仍有部分學者考慮到神經元膜電位的溫度依賴性,認為即使溫度的微小變化也可能影響細胞膜的興奮性[26];也有學者提出超聲可能通過熱效應擾亂突觸信號通路來抑制神經元活動[27],還有學者提出熱神經調節的概念[28],因此熱效應可能是LIFU進行神經調控的作用機制之一。
2.4 "其它機制
除了上述提到的3種作用機制外,超聲神經調控的作用機制還存在其它假說。聽覺旁路機制假說認為超聲對神經調控的一部分反應可能是通過聽覺通路引起的間接神經調控所導致的[29-31],而不是神經回路的直接激活。有研究采用耳聾鼠模型驗證了聽覺神經通路在經顱磁聲耦合刺激中的重要作用[32]。然而,有學者通過基因敲除小鼠(目的是消除其聽覺反應)外周聽覺活動的實驗證實了LIFU誘發的運動反應不是刺激外周聽覺系統的結果,證明了LIFU可以直接激活運動回路[33]?;诖?,該假說作為LIFU神經調控的機制尚存在爭議,目前尚未被認為是LIFU神經調控的主要作用機制,有待進一步的研究。LIFU導致腦電震蕩動力學改變的機制也逐漸被提出。一項實驗證實了LIFU改變了β頻率的大腦固有活動的相位分布,而不影響γ頻率,驗證了經顱聚焦超聲能夠改變體感誘發電位的幅度及其相關的頻譜內容,說明LIFU調控神經活動具有空間特異性[34]。有研究通過對多部位腦電圖在時間域、頻率域和空間域等的分析,實現了對LIFU誘發的腦激活時空分布進行成像的可行性[35]。此外,超聲與微管震蕩相互作用從而影響神經活動的假說也被提及[36]。
3 "超聲在神經系統的應用
除了探討超聲神經調控的現象和機制,國內外大量實驗證明,LIFU有助于神經系統疾病的治療,主要集中于癲癇[37]、阿爾茨海默?。?8]、卒中[39]、顱腦外傷[40]、減少痛感[41]、調節學習記憶[42]等。首先是開放血腦屏障。2001年,有研究首次證明在超聲造影劑微泡的作用下,聚焦超聲可以短暫、局部、可逆地開放血腦屏障而不損傷周圍腦組織[43],這有助于治療藥物、基因載體或其他臨床干預方式到達靶區腦組織,并且該方式被認為是安全的[44-46]。其次,有研究報道,低強度脈沖超聲波的刺激可能增加了具有神經保護作用的腦源性神經營養因子等的產生[47],并且通過抑制有害的小膠質細胞過度激活來減少神經炎癥,同時開放血腦屏障的功能幫助清除病理性蛋白,這種效應可能有助于神經系統的調控,改善神經退行性疾病的預后[47, 48]。再者,超聲能夠無創性液化血凝塊促進腦出血血凝塊的清除和溶栓[49],還能通過調節水通道蛋白改善創傷性腦損傷的腦水腫[50],調控迷走神經有效降低血壓[51],調控膝周神經降低患者的疼痛感[41],調節神經血管耦合引起血流動力學改變[52]。除此之外,超聲和新型電磁納米材料結合產生的電磁場可以調控細胞內信號,從而影響突觸的可塑性并且控制神經行為,改善退行性疾?。?3]。
4 "總結與展望
綜上所述,LIFU能夠通過機械通道、空化效應等作用機制進行神經調控和神經系統疾病的治療,但仍有一些問題需要關注,比如神經系統的復雜性、超聲參數的多變性和尚未統一的實驗范式。未來仍需要開展相關基礎和臨床研究來進一步明確更多神經靶點對超聲波的潛在電生理和行為反應,優化超聲參數,進一步探索超聲的精確化定位方式,從而實現超聲神經調控的臨床應用。
參考文獻:
[1] " Okun MS. Deep?brain stimulation for Parkinson's disease[J]. N Engl J Med, 2012, 367(16): 1529-38.
[2] " Chase HW, Boudewyn MA, Carter CS, et al. Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation[J]. Mol Psychiatry, 2020, 25(2): 397-407.
[3] " Rost BR, Schneider?Warme F, Schmitz D, et al. Optogenetic tools for subcellular applications in neuroscience[J]. Neuron, 2017, 96(3): 572-603.
[4] " Harvey EN. The effect of high frequency sound waves on heart muscle and other irritable tissues[J]. Am J Physiol Leg Content, 1929, 91(1): 284-90.
[5] " Fry FJ, Ades HW, Fry WJ. Production of reversible changes in the central nervous system by ultrasound[J]. Science, 1958, 127(3289): 83-4.
[6] " Tyler WJ, Tufail Y, Finsterwald M, et al. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound[J]. "PLoS One, 2008, 3(10): e3511.
[7] " Yoo SS, Bystritsky A, Lee JH, et al. Focused ultrasound modulates region?specific brain activity[J]. Neuroimage, 2011, 56(3): 1267-75.
[8] " Deffieux T, Younan Y, Wattiez N, et al. Low?intensity focused ultrasound modulates monkey visuomotor behavior[J]. Curr Biol, 2013, 23(23): 2430-3.
[9] " Colucci V, Strichartz G, Jolesz F, et al. Focused ultrasound effects on nerve action potential in vitro[J]. Ultrasound Med Biol, 2009, 35(10): 1737-47.
[10] Lee W, Lee SD, Park MY, et al. Image-guided focused ultrasound-mediated regional brain stimulation in sheep[J]. Ultrasound Med Biol, 2016, 42(2): 459-70.
[11] "Panczykowski DM, Monaco EA 3rd, Friedlander RM. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans[J]. Neurosurgery, 2014, 74(6): N8.
[12] "Legon W, Sato TF, Opitz A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans[J]. Nat Neurosci, 2014, 17(2): 322-9.
[13] Huang SL, Chang CW, Lee YH, et al. Protective effect of low-intensity pulsed ultrasound on memory impairment and brain damage in a rat model of vascular dementia[J]. Radiology, 2017, 282(1): 113-22.
[14] Nightingale KR, Palmeri ML, Nightingale RW, et al. On the feasibility of remote palpation using acoustic radiation force[J]. J Acoust Soc Am, 2001, 110(1): 625-34.
[15] Tyler WJ, Lani SW, Hwang GM. Ultrasonic modulation of neural circuit activity[J]. Curr Opin Neurobiol, 2018, 50: 222-31.
[16] Lai J, Pittelkow MR. Physiological effects of ultrasound mist on fibroblasts[J]. Int J Dermatol, 2007, 46(6): 587-93.
[17] Kubanek J, Shi JY, Marsh J, et al. Ultrasound modulates ion channel currents[J]. Sci Rep, 2016, 6: 24170.
[18] "Ye J, Tang SY, Meng L, et al. Ultrasonic control of neural activity through activation of the mechanosensitive channel MscL[J]. Nano Lett, 2018, 18(7): 4148-55.
[19] Kubanek J, Shukla P, Das A, et al. Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system[J]. J Neurosci, 2018, 38(12): 3081-91.
[20] Radhakrishnan K, Bader KB, Haworth KJ, et al. Relationship between cavitation and loss of echogenicity from ultrasound contrast agents[J]. Phys Med Biol, 2013, 58(18): 6541-63.
[21] "Zhang LL, Lin ZH, Zeng L, et al. Ultrasound?induced biophysical effects in controlled drug delivery[J]. Sci China Life Sci, 2022, 65(5): 896-908.
[22] Fomenko A, Neudorfer C, Dallapiazza RF, et al. Low?intensity ultrasound neuromodulation: an overview of mechanisms and emerging human applications[J]. Brain Stimul, 2018, 11(6): 1209-17.
[23] "Lentacker I, de Cock I, Deckers R, et al. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms[J]. Adv Drug Deliv Rev, 2014, 72: 49-64.
[24]Krasovitski B, Frenkel V, Shoham S, et al. Intramembrane cavitation as a unifying mechanism for ultrasound?induced bioeffects[J]. Proc Natl Acad Sci U S A, 2011, 108(8): 3258-63.
[25] "Pasquinelli C, Hanson LG, Siebner HR, et al. Safety of transcranial focused ultrasound stimulation: a systematic review of the state of knowledge from both human and animal studies[J]. Brain Stimul, 2019, 12(6): 1367-80.
[26] "Buzatu S. The temperature-induced changes in membrane potential[J]. Riv Biol, 2009, 102(2): 199-217.
[27] Borrelli MJ, Bailey KI, Dunn F. Early ultrasonic effects upon mammalian CNS structures (chemical synapses)[J]. J Acoust Soc Am, 1981, 69(5): 1514-6.
[28] Gong ZR, Dai ZF. Design and challenges of sonodynamic therapy system for cancer theranostics: from equipment to sensitizers[J]. Adv Sci, 2021, 8(10): 2002178.
[29] "Sato T, Shapiro MG, Tsao DY. Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism[J]. Neuron, 2018, 98(5): 1031-41.e5.
[30]Guo HS, Hamilton Ii M, Offutt SJ, et al. Ultrasound produces extensive brain activation via a cochlear pathway[J]. Neuron, 2018, 99(4): 866.
[31] "Airan RD, Butts Pauly K. Hearing out ultrasound neuromodulation[J]. Neuron, 2018, 98(5): 875-7.
[32] "周曉青, 劉睿旭, 譚如欣, 等. 聽覺神經通路在磁聲耦合刺激調控運動皮層中的作用[J]. 中國生物醫學工程學報, 2021, 40(2): 188-94.
[33] Mohammadjavadi M, Ye PP, Xia AP, et al. Elimination of peripheral auditory pathway activation does not affect motor responses from ultrasound neuromodulation[J]. Brain Stimul, 2019, 12(4): 901-10.
[34] Mueller J, Legon W, Opitz A, et al. Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics[J]. Brain Stimul, 2014, 7(6): 900-8.
[35] "Yu K, Sohrabpour A, He B. Electrophysiological source imaging of brain networks perturbed by low?intensity transcranial focused ultrasound[J]. IEEE Trans Biomed Eng, 2016, 63(9): 1787-94.
[36] "Hameroff S, Penrose R. Consciousness in the universe: a review of the 'Orch OR' theory[J]. Phys Life Rev, 2014, 11(1): 39-78.
[37] "Zou JJ, Yi SS, Niu LL, et al. Neuroprotective effect of ultrasound neuromodulation on kainic acid?induced epilepsy in mice[J]. IEEE Trans Ultrason Ferroelectr Freq Control, 2021, 68(9): 3006-16.
[38] G?tz J, Richter?Stretton G, Cruz E. Therapeutic ultrasound as a treatment modality for physiological and pathological ageing including Alzheimer's disease[J]. Pharmaceutics, 2021, 13(7): 1002.
[39] Liu LX, Du J, Zheng T, et al. Protective effect of low?intensity transcranial ultrasound stimulation after differing delay following an acute ischemic stroke[J]. Brain Res Bull, 2019, 146: 22-7.
[40] "Zheng T, Du J, Yuan Y, et al. Effect of low intensity transcranial ultrasound (LITUS) on post?traumatic brain edema in rats: evaluation by isotropic 3?dimensional T2 and multi?TE T2 weighted MRI[J]. Front Neurol, 2020, 11: 578638.
[41] "胡珊珊, 劉 "曉, 羅漢才, 等. 低強度脈沖超聲調控治療疼痛性膝骨關節炎的臨床研究[J]. 實用醫學雜志, 2023, 39(21): 2783-8.
[42] "梁 "燕, 張保朝, 傅國惠. 超聲刺激在紅藻氨酸誘導的癲癇小鼠中呈現抗癲癇和海馬神經保護作用[J]. 中國組織化學與細胞化學雜志, 2021, 30(1): 13-8.
[43] Hynynen K, McDannold N, Vykhodtseva N, et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits[J]. Radiology, 2001, 220(3): 640-6.
[44] Rezai AR, Ranjan M, D'Haese PF, et al. Noninvasive hippocampal blood-brain barrier opening in Alzheimer's disease with focused ultrasound[J]. Proc Natl Acad Sci U S A, 2020, 117(17): 9180-2.
[45] "Wu HY, Zhou Y, Xu LX, et al. Mapping knowledge structure and research frontiers of ultrasound?induced blood?brain barrier opening: a scientometric study[J]. Front Neurosci, 2021, 15: 706105.
[46] "Felix MS, Borloz E, Metwally K, et al. Ultrasound-mediated blood-brain barrier opening improves whole brain gene delivery in mice[J]. Pharmaceutics, 2021, 13(8): 1245.
[47] Chen TT, Lan TH, Yang FY. Low?intensity pulsed ultrasound attenuates LPS?induced neuroinflammation and memory impairment by modulation of TLR4/NF-κB signaling and CREB/BDNF expression[J]. Cereb Cortex, 2019, 29(4): 1430-8.
[48] Leinenga G, G?tz J. Scanning ultrasound removes amyloid?β and restores memory in an Alzheimer's disease mouse model[J]. Sci Transl Med, 2015, 7(278): 278ra33.
[49] Monteith SJ, Kassell NF, Goren O, et al. Transcranial MR-guided focused ultrasound sonothrombolysis in the treatment of intracerebral hemorrhage[J]. Neurosurg Focus, 2013, 34(5): E14.
[50] "Zheng T, Yuan Y, Yang HX, et al. Evaluating the therapeutic effect of low?intensity transcranial ultrasound on traumatic brain injury with diffusion kurtosis imaging[J]. J Magn Reson Imaging, 2020, 52(2): 520-31.
[51] "廖海芬, 孟 "文, 牛麗麗, 等. 以低強度聚焦超聲刺激大鼠迷走神經的安全性[J]. 中國介入影像與治療學, 2024, 21(6): 358-62.
[52]Song H, Chen RY, Ren LY, et al. Low intensity transcranial ultrasound stimulation induces hemodynamic responses through neurovascular coupling[J]. iScience, 2024, 27(7): 110269.
[53] Zhao D, Feng PJ, Liu JH, et al. Electromagnetized?nanoparticle-modulated neural plasticity and recovery of degenerative dopaminergic neurons in the mid-brain[J]. Adv Mater, 2020, 32(43): e2003800.
(編輯:郎 "朗)