







摘要:目的 探討棕櫚酰轉(zhuǎn)移酶(ZDHHC5)和核苷酸結(jié)合寡聚化結(jié)構(gòu)域2(NOD2)在小鼠心肺復(fù)蘇(CPR)后腦損傷中的作用。方法 24只C57BL/6J雄性小鼠分為空白組、對(duì)照組、ZDHHC5-si組和NOD2-si組,每組6只。空白組無(wú)需任何處理,其余3組進(jìn)行CPR造模。CPR造模前ZDHHC5-si組和NOD2-si組小鼠分別通過(guò)尾靜脈注射ZDHHC5 siRNA和NOD2 siRNA。改良神經(jīng)功能缺損量表(mNSS)評(píng)估各組造模后24 h、48 h和72 h的神經(jīng)功能。72 h后采集血液標(biāo)本和腦組織。實(shí)時(shí)熒光定量PCR(qPCR)檢測(cè)腦組織ZDHHC5和NOD2 mRNA表達(dá)。酶聯(lián)免疫吸附試驗(yàn)(ELISA)檢測(cè)血漿白細(xì)胞介素(IL)-1β、腫瘤壞死因子α(TNF-α)和IL-6;比色法及硫代巴比妥酸(TBA)法分別檢測(cè)腦組織丙二醛(MDA)和髓過(guò)氧化物酶(MPO)。Western blot檢測(cè)腦組織Cleaved Caspase-3、ZDHHC5及NOD2的蛋白表達(dá)。光鏡下觀察腦組織蘇木素伊紅(HE)染色病理切片。熒光顯微鏡下觀察腦組織TUNEL染色病理切片。結(jié)果 與空白組比較,其他3組mNSS評(píng)分,IL-1β、TNF-α、IL-6、MDA和MPO的表達(dá)水平,Cleaved Caspase-3、ZDHHC5和NOD2的蛋白表達(dá)量升高(P<0.05),腦組織損傷和細(xì)胞凋亡加重。與對(duì)照組比較,ZDHHC5-si組和NOD2-si組上述指標(biāo)降低(P<0.05),腦組織損傷和細(xì)胞凋亡減輕。與NOD2-si組比較,ZDHHC5-si組上述指標(biāo)降低(P<0.05),腦組織損傷和細(xì)胞凋亡進(jìn)一步減輕。結(jié)論 在小鼠CPR模型中,NOD2受ZDHHC5的調(diào)控后可產(chǎn)生棕櫚酰化修飾的NOD2,進(jìn)而促使炎性因子釋放并引起神經(jīng)細(xì)胞凋亡,損傷腦組織并影響神經(jīng)功能。
關(guān)鍵詞:心肺復(fù)蘇術(shù);腦損傷;脂化作用;神經(jīng)保護(hù);核苷酸結(jié)合寡聚化結(jié)構(gòu)域2;棕櫚酰轉(zhuǎn)移酶
中圖分類號(hào):R459.7,R651.15 文獻(xiàn)標(biāo)志碼:A DOI:10.11958/20231874
Role of palmitoyltransferase modified NOD2 in brain injury after cardiopulmonary
resuscitation in mice
ZHOU Chengji, TANG Yong, JIANG Peng, HU Zhouquan, WEI Wei, WANG Guoan, FU Xiaofei△
Department of Emergency, Chengdu Second People′s Hospital, Chengdu 610017, China
△Corresponding Author E-mail: 51143830@qq.com
Abstract: Objective To investigate the role of nucleotide-binding oligomerization domain 2 (NOD2) modified by palmitoyltransferase (ZDHHC5) in brain injury after cardiopulmonary resuscitation (CPR) in mice. Methods Twenty-four male C57BL/6J mice were divided into the blank group, the control group, the ZDHHC5-si group and the NOD2-si group, with 6 mice in each group. Except for the blank group without any treatment, CPR modeling was performed in the other three groups. At 24 h before CPR, mice in the ZDHHC5-si group and the NOD2-si group were injected with ZDHHC5 siRNA and NOD2 siRNA via tail vein, respectively. The modified neurological deficit scale (mNSS) was used to evaluate the neurological function at 24 h, 48 h and 72 h in each group. Blood samples and brain tissue were collected 72 h after modeling. Real-time fluorescent quantitative PCR (qPCR) was used to detect ZDHHC5 and NOD2 in brain tissue. The protein expression levels of IL-1β, TNF-α and IL-6 in plasma were detected by enzyme-linked immunosorbent assay (ELISA). Colorimetric method and thiobarbituric acid (TBA) method were used to detect protein expression levels of MDA and MPO in brain tissue, respectively. Western blot assay was used to detect expression levels of Cleaved Caspase-3, ZDHHC5 and NOD2 in brain tissue. HE pathological sections of brain tissue were observed under light microscope. The pathological sections of brain tissue were observed by TUNEL under fluorescence microscope. Results Compared with the blank group, the mNSS score, the expression levels of IL-1β, TNF-α, IL-6, MDA and MPO, and the protein expression levels of Cleaved Caspase-3, ZDHHC5 and NOD2 were significantly increased (P<0.05), and brain tissue damage and cell apoptosis were aggravated in the other three groups. Compared with the control group, the above indicators were significantly decreased in the ZDHHC5-si group and the NOD2-si group (P<0.05), and brain tissue damage and cell apoptosis were significantly attenuated. Compared with the NOD2-si group, the above parameters were significantly decreased (P<0.05), and brain tissue damage and cell apoptosis were further attenuated in the ZDHHC5-si group. Conclusion In the mouse CPR model, NOD2 can produce palmitoylated NOD2 after regulated by ZDHHC5, which further promotes the release of inflammatory factors and causes neuronal apoptosis, ultimately damaging brain tissue and affecting neurological function.
Key words: cardiopulmonary resuscitation; brain injuries; lipoylation; neuroprotection; nucleotide-binding oligomerization domain containing 2; zinc finger DHHC-type palmitoyltransferase 5
心搏驟停(CA)一旦發(fā)生,如得不到及時(shí)搶救將威脅生命。研究顯示,即使CA后又恢復(fù)了自主循環(huán)(ROSC),仍有約80%的患者會(huì)發(fā)生不同程度的昏迷,32%成為植物人,25.6%死于神經(jīng)功能衰竭,只有不到4%的CA患者不遺留神經(jīng)功能后遺癥[1]。因此,如何有效實(shí)施腦復(fù)蘇治療以挽救缺血神經(jīng)元,促進(jìn)受損神經(jīng)組織修復(fù),維持正常的神經(jīng)功能成為心肺復(fù)蘇(CPR)的研究重點(diǎn),也是目前急救及急危重癥醫(yī)學(xué)面臨的重大難題。核苷酸結(jié)合寡聚化結(jié)構(gòu)域2(NOD2)是體內(nèi)識(shí)別損傷相關(guān)分子模式、誘導(dǎo)炎性介質(zhì)和生長(zhǎng)因子釋放的最主要受體[2]。最新研究發(fā)現(xiàn),當(dāng)機(jī)體發(fā)生缺血缺氧時(shí),需經(jīng)鋅指DHHC型棕櫚酰轉(zhuǎn)移酶5(ZDHHC5)修飾的NOD2,進(jìn)而誘導(dǎo)炎性介質(zhì)和生長(zhǎng)因子釋放,最終損傷細(xì)胞及組織[3]。本研究采用CPR小鼠模型探討ZDHHC5修飾的NOD2在小鼠CPR術(shù)后腦損傷中的作用及可能機(jī)制,從而為臨床干預(yù)CPR術(shù)后腦損傷提供治療參考與靶點(diǎn)。
1 材料與方法
1.1 材料與儀器 普通級(jí)雄性C57BL/6J小鼠24只,8~10周齡,購(gòu)自成都達(dá)碩實(shí)驗(yàn)動(dòng)物有限公司[SCXK(川)2022-0039]。白細(xì)胞介素(IL)-1β、腫瘤壞死因子α(TNF-α)和IL-6的酶聯(lián)免疫吸附試驗(yàn)(ELISA)試劑盒購(gòu)自南京建成生物工程研究所。硫代巴比妥酸(TBA)和比色法試劑盒購(gòu)自武漢六合生物技術(shù)有限公司。鼠源β-Tubulin購(gòu)自美國(guó)Affinity Bioscience公司。兔源Caspase-3、Cleaved Caspase-3、ZDHHC5及NOD2一抗購(gòu)自成都正能生物技術(shù)有限責(zé)任公司。羊抗兔二抗和羊抗鼠二抗購(gòu)自美國(guó)Thermo Fisher Scientific公司。ZDHHC5 siRNA和NOD2 siRNA購(gòu)自蘇州瑞博生物技術(shù)有限公司。TRIzol試劑購(gòu)自湖南艾科瑞生物有限公司。一步法gDNA去除試劑、cDNA合成試劑和實(shí)時(shí)熒光定量PCR(qPCR)試劑購(gòu)自北京全式金生物技術(shù)有限公司。SAR-1000型動(dòng)物呼吸機(jī)購(gòu)自北京世聯(lián)博研科技有限公司。電泳儀、凝膠成像儀、蛋白轉(zhuǎn)膜夾購(gòu)自Bio-Rad(美國(guó))公司。qPCR儀購(gòu)自Roche(瑞士)公司。
1.2 研究方法
1.2.1 動(dòng)物分組 24只小鼠依隨機(jī)數(shù)字表法分為空白組、對(duì)照組、ZDHHC5-si組和NOD2-si組,每組6只。空白組無(wú)需任何處理,其余3組進(jìn)行CPR造模。CPR造模前ZDHHC5-si組和NOD2-si組小鼠當(dāng)日分別通過(guò)尾靜脈注射ZDHHC5 siRNA和NOD2 siRNA 2次,每次15 mg/kg,對(duì)照組通過(guò)尾靜脈注射等量生理鹽水;造模前12 h禁食,不限制飲水。
1.2.2 CPR造模 參照文獻(xiàn)[4],如果小鼠CPR造模時(shí)10 min內(nèi)未能恢復(fù)自主循環(huán)則造模失敗,及時(shí)補(bǔ)充實(shí)驗(yàn)小鼠,重新分組及造模。小鼠恢復(fù)自主呼吸后,拔除所有插管并縫合切口,待蘇醒后放回籠內(nèi),自由飲食,觀察有無(wú)死亡,如有死亡則不再評(píng)估神經(jīng)功能,也不采集標(biāo)本,而是重新補(bǔ)充小鼠并造模,直至72 h未死亡,則為造模成功。本研究經(jīng)成都市第二人民醫(yī)院倫理委員會(huì)批準(zhǔn)(2021057)。
1.2.3 神經(jīng)功能評(píng)估 采用改良神經(jīng)功能缺損量表(mNSS)評(píng)估4組小鼠造模后24 h、48 h和72 h的神經(jīng)功能。損傷程度:1~6分為輕度,7~12分為中度,13分及以上為重度,總分18分。
1.2.4 標(biāo)本采集及處理 4組小鼠造模后72 h用3%戊巴比妥鈉(45 mg/kg)腹腔注射麻醉后,摘除眼球并用含有乙二胺四乙酸(EDTA)的采血管采集1~2 mL血液,3 000 r/min離心15 min,取適量上清液,于-80 ℃冰箱保存?zhèn)溆谩H?.5~1 g腦組織,加入1 mL細(xì)胞裂解液,充分研磨后,10 000 r/min離心10 min,取上清液,于-80 ℃冰箱保存?zhèn)溆谩H〔糠帜X組織于4%多聚甲醛固定備用。
1.2.5 qPCR檢測(cè)相關(guān)基因表達(dá) 用TRIzol試劑從采集的小鼠腦組織上清液中提取總RNA。使用EasyScript One-Step gDNA Removal和cDNA Synthesis SuperMix對(duì)總RNA(40 ng)進(jìn)行逆轉(zhuǎn)錄后,qPCR檢測(cè)mRNA的表達(dá)。引物序列見(jiàn)表1。10 μL反應(yīng)體系:2×TransStart Green qPCR SuperMix 5 μL,上、下游引物各0.2 μL,cDNA 1 μL,ddH2O 3.6 μL。反應(yīng)條件:94 ℃ 30 s;94 ℃變性5 s,60 ℃退火15 s,72 ℃延伸10 s,循環(huán)45次。以β-actin作為內(nèi)參。2-ΔΔCt法表示ZDHHC5和NOD2的相對(duì)表達(dá)情況。
1.2.6 ELISA、比色法及TBA法檢測(cè)炎性因子表達(dá) 參照說(shuō)明書(shū),使用ELISA法檢測(cè)小鼠血漿IL-1β、TNF-α和IL-6蛋白表達(dá)水平;使用比色法和TBA法分別檢測(cè)小鼠腦組織丙二醛(MDA)和髓過(guò)氧化物酶(MPO)含量。
1.2.7 Western blot檢測(cè)腦組織相關(guān)蛋白表達(dá) 取20 μg的腦組織裂解蛋白,裝載到SDS-PAGE凝膠上進(jìn)行電泳,隨后轉(zhuǎn)移到PVDF膜上,用5%脫脂奶粉進(jìn)行封閉后,含0.05%吐" "溫-20的pH 7.4磷酸鹽緩沖液(PBS-T)洗膜3次,每次15 min,將膜與靶向β-Tubulin、Caspase-3、Cleaved Caspase-3、ZDHHC5和NOD2(均1∶1 000)一抗孵育過(guò)夜,PBST洗膜3次,每次15 min后,與相應(yīng)二抗(1∶5 000)孵育1 h并再次PBST洗膜3次,每次15 min,Caspase-3作為Cleaved Caspase-3的內(nèi)參對(duì)照物。β-Tubulin作為ZDHHC5和NOD2的內(nèi)參對(duì)照物,用增強(qiáng)型化學(xué)發(fā)光試劑(ECL)檢測(cè)目的蛋白條帶。使用Image J軟件分析條帶蛋白的相對(duì)表達(dá)量。
1.2.8 蘇木素伊紅(HE)染色觀察腦組織病理變化 取經(jīng)4%多聚甲醛固定的小鼠腦組織,HE染色后由2位經(jīng)驗(yàn)豐富的病理醫(yī)師采用雙盲法評(píng)估小鼠腦組織損傷程度。
1.2.9 TUNEL檢測(cè)腦組織細(xì)胞凋亡 取各組腦組織的石蠟切片,在烤片機(jī)中設(shè)置60 ℃烤片30 min,松節(jié)油及無(wú)水乙醇中脫蠟,磷酸鹽緩沖液(PBS)清洗5 min,清洗3次。0.1%檸檬酸鈉溶液配制0.1%Triton-100,破膜液室溫下破膜30 min,PBS清洗5 min,清洗3次。滴加TDT和dUTP的配比為1∶10的TUNEL反應(yīng)液,避光孵育1 h,PBS洗3次,每次5 min。1×DAPI染色液滴在玻片上,孵育10 min后PBS清洗3次,每次5 min,熒光顯微鏡采集圖像,觀察腦組織凋亡狀況。
1.3 統(tǒng)計(jì)學(xué)方法 采用SPSS 25.0和GraphPad Prism 9.0軟件進(jìn)行數(shù)據(jù)分析。符合正態(tài)分布的計(jì)量數(shù)據(jù)以[[x] ±s]表示,2組間比較采用t檢驗(yàn),多組間比較采用單因素方差分析,組間多重比較采用SNK-q檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 各組小鼠mNSS評(píng)分比較 與空白組比較,其他3組24 h、48 h、72 h mNSS評(píng)分升高(P<0.05);與對(duì)照組比較,ZDHHC5-si組和NOD2-si組24 h、48 h、72 h mNSS評(píng)分降低(P<0.05);與ZDHHC5-si組比較,NOD2-si組mNSS評(píng)分升高(P<0.05),見(jiàn)表2。
2.2 各組腦組織ZDHHC5和NOD2 mRNA相對(duì)表達(dá)量比較 與空白組比較,其他3組72 h腦組織ZDHHC5和NOD2 mRNA相對(duì)表達(dá)水平升高(P<0.05);與對(duì)照組比較,ZDHHC5-si組和NOD2-si組ZDHHC5和NOD2 mRNA相對(duì)表達(dá)水平降低(P<0.05);與ZDHHC5-si組比較,NOD2-si組ZDHHC5和NOD2 mRNA相對(duì)表達(dá)水平升高(P<0.05),見(jiàn)表3。
2.3 各組炎性因子比較 與空白組比較,其他3組IL-1β、TNF-α、IL-6水平及MDA和MPO含量升高(P<0.05);與對(duì)照組比較,ZDHHC5-si組和NOD2-si組IL-1β、TNF-α、IL-6水平及MDA和MPO含量降低(P<0.05);與ZDHHC5-si組比較,NOD2-si組上述指標(biāo)水平升高(P<0.05),見(jiàn)表4。
2.4 各組腦組織相關(guān)蛋白表達(dá)水平比較 與空白組比較,其他3組Cleaved Caspase-3、ZDHHC5和NOD2的蛋白表達(dá)量升高(P<0.05);與對(duì)照組相比,ZDHHC5-si組和NOD2-si組Cleaved Caspase-3、ZDHHC5和NOD2的蛋白表達(dá)量降低(P<0.05);與ZDHHC5-si組比較,NOD2-si組上述蛋白表達(dá)量升高(P<0.05),見(jiàn)圖1、表5。
2.6 各組腦組織細(xì)胞凋亡情況比較 與空白組比較,其他3組腦組織細(xì)胞凋亡加重;與對(duì)照組比較,ZDHHC5-si組和NOD2-si組腦組織細(xì)胞凋亡減輕;與ZDHHC5-si組比較,NOD2-si組腦組織細(xì)胞凋亡加重,見(jiàn)圖3。
3 討論
心臟驟停后腦損傷(post-cardiac arrest brain injury,PCABI)是心臟驟停復(fù)蘇后患者死亡的主要病因,也是CPR術(shù)后患者長(zhǎng)期殘疾的主要原因[5-6]。PCABI包括原發(fā)性(缺血性)和繼發(fā)性(再灌注)損傷,在心臟驟停、復(fù)蘇和急性復(fù)蘇后相繼發(fā)生[7]。由于神經(jīng)細(xì)胞依賴于氧和葡萄糖的持續(xù)供應(yīng),一旦腦組織發(fā)生缺血再灌注損傷時(shí),神經(jīng)細(xì)胞極易受損并死亡,細(xì)胞凋亡是其主要的機(jī)制之一[8]。長(zhǎng)期以來(lái),CPR術(shù)后神經(jīng)細(xì)胞凋亡的研究進(jìn)展不大,低溫治療雖具有一定的腦保護(hù)作用,但難以逆轉(zhuǎn)已形成的神經(jīng)細(xì)胞損傷[9]。蛋白質(zhì)棕櫚酰化是一系列細(xì)胞凋亡過(guò)程中的重要參與者,因此介導(dǎo)這種修飾的棕櫚酰酰基轉(zhuǎn)移酶(palmitoyl acyltransferase,PAT)已成為研究者們關(guān)注的焦點(diǎn)。棕櫚酰轉(zhuǎn)移酶ZDHHC5是PAT家族中重要的成員之一,它不僅是細(xì)胞凋亡中極其關(guān)鍵的媒介之一,也參與多種疾病的發(fā)生、發(fā)展,如癌癥[10]、糖尿病[11]以及神經(jīng)系統(tǒng)疾病中的亨廷頓氏病[12]、精神分裂癥[13]和阿爾茨海默病[14]等。研究表明,ZDHHC5可通過(guò)增加Cleaved Caspase-3的水平促進(jìn)胃腺癌細(xì)胞的凋亡[15]。谷子等[16]發(fā)現(xiàn),ZDHHC5可促使TNF-α、IL-1β、IL-6、MDA及MPO等炎性因子的釋放,損傷肺組織。本研究結(jié)果亦顯示,ZDHHC5的表達(dá)在CPR小鼠腦組織中明顯升高,敲低ZDHHC5可明顯降低IL-1β、TNF-α、IL-6、MDA和MPO水平,保護(hù)腦組織,表明ZDHHC5可促進(jìn)炎性因子釋放,損傷腦組織。另有研究發(fā)現(xiàn),DHHC5可通過(guò)棕櫚酰化和激活信號(hào)轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(STAT3)減少少突膠質(zhì)細(xì)胞的凋亡,并促進(jìn)其發(fā)育和增殖[17]。這與本研究結(jié)果相反。本研究結(jié)果顯示,敲低ZDHHC5可明顯降低Cleaved Caspase-3的生成,減少神經(jīng)細(xì)胞凋亡,改善神經(jīng)癥狀,表明ZDHHC5可通過(guò)激活Cleaved Caspase-3來(lái)促進(jìn)CPR小鼠神經(jīng)細(xì)胞凋亡。考慮相反結(jié)果的可能原因?yàn)閆DHHC5調(diào)控細(xì)胞凋亡是個(gè)非常復(fù)雜的過(guò)程,調(diào)控不同的通路可有不同的結(jié)果。
ZDHHC5介導(dǎo)的NOD2的棕櫚酰化對(duì)于機(jī)體免疫信號(hào)傳導(dǎo)途徑和產(chǎn)生有效免疫應(yīng)答的能力至關(guān)重要[18]。NOD2在機(jī)體防御和生存中起著至關(guān)重要的作用,NOD2功能失調(diào)可導(dǎo)致嚴(yán)重的免疫和炎性疾病,如克羅恩病[19]和Blau綜合征[20]。研究發(fā)現(xiàn)NOD2參與缺氧復(fù)氧過(guò)程中心肌細(xì)胞誘導(dǎo)的氧化應(yīng)激、炎癥和細(xì)胞凋亡[21]。Singh等[22]研究認(rèn)為,NOD2可促進(jìn)帕金森病患者星形膠質(zhì)細(xì)胞凋亡。Shi等[23]認(rèn)為,NOD2可引起膿毒癥患者的星形膠質(zhì)細(xì)胞凋亡。Zheng等[24]研究發(fā)現(xiàn),NOD2可促進(jìn)細(xì)胞凋亡,并通過(guò)抑制核因子κB(NF-κB)信號(hào)通路降低慢性淋巴細(xì)胞白血病的耐藥性。谷子等[16]研究顯示,在失血性休克的動(dòng)物模型中,NOD2在ZDHHC5的調(diào)控下可產(chǎn)生棕櫚酰化修飾的NOD2,從而促使炎性因子釋放,損傷肺組織。Liu等[25]研究表明,NOD2參與腦缺血再灌注損傷后的炎癥反應(yīng),其表達(dá)水平與腦損傷程度呈正相關(guān)。本研究結(jié)果亦顯示,NOD2的表達(dá)在CPR小鼠腦組織中明顯升高,敲低ZDHHC5可明顯抑制NOD2的表達(dá),且抑制ZDHHC5表達(dá)比抑制NOD2表達(dá)的小鼠腦組織炎性因子的水平更低,病理?yè)p傷更輕,神經(jīng)細(xì)胞凋亡更少,說(shuō)明ZDHHC5可通過(guò)調(diào)控NOD2進(jìn)而促使炎性因子釋放及神經(jīng)細(xì)胞凋亡,最終損傷腦組織。目前,ZDHHC5具體的調(diào)控機(jī)制還不清楚,有待進(jìn)一步研究。
綜上所述,在CPR動(dòng)物模型中,NOD2受ZDHHC5的調(diào)控后產(chǎn)生棕櫚酰化修飾的NOD2,進(jìn)而導(dǎo)致神經(jīng)細(xì)胞凋亡,促使MDA、MPO、IL-1β、IL-6和TNF-α等炎性因子釋放,損傷腦組織并影響神經(jīng)功能。敲低ZDHHC5可明顯減輕NOD2介導(dǎo)的神經(jīng)細(xì)胞凋亡和腦損傷,改善神經(jīng)損傷癥狀。
參考文獻(xiàn)
[1] ABRAMS D,MACLAREN G,LORUSSO R,et al. Extracorporeal cardiopulmonary resuscitation in adults: evidence and implications[J]. Intensive Care Med,2022,48(1):1-15. doi:10.1007/s00134-021-06514-y.
[2] GAO J,ZHAO X,HU S,et al. Gut microbial DL-endopeptidase alleviates Crohn's disease via the NOD2 pathway[J]. Cell Host Microbe,2022,30(10):1435-1449.e9. doi:10.1016/j.chom.2022.08.002.
[3] ZHOU L,HE X,WANG L,et al. Palmitoylation restricts SQSTM1/p62-mediated autophagic degradation of NOD2 to modulate inflammation[J]. Cell Death Differ,2022,29(8):1541-1551. doi:10.1038/s41418-022-00942-z.
[4] HUANG K,WANG Z,GU Y,et al. Glibenclamide is comparable to target temperature management in improving survival and neurological outcome after asphyxial cardiac arrest in rats[J]. J Am Heart Assoc,2016,5(7):e003465. doi:10.1161/JAHA.116.003465.
[5] SANDRONI C,CRONBERG T,SEKHON M. Brain injury after cardiac arrest:pathophysiology, treatment,and prognosis[J]. Intensive Care Med,2021,47(12):1393-1414. doi:10.1007/s00134-021-06548-2.
[6] CUNNINGHAM C A,COPPLER P J,SKOLNIK A B. The immunology of the post-cardiac arrest syndrome[J]. Resuscitation,2022,179:116-123. doi:10.1016/j.resuscitation.2022.08.013.
[7] LAGEBRANT A,LANG M,NIELSEN N,et al. Brain injury markers in blood predict signs of hypoxic ischaemic encephalopathy on head computed tomography after cardiac arrest[J]. Resuscitation,2023,184:109668. doi:10.1016/j.resuscitation.2022.12.006.
[8] 溫兆孟,劉文虎,梁金,等. 顱腦創(chuàng)傷后泛素-蛋白酶體系統(tǒng)和自噬系統(tǒng)機(jī)制研究進(jìn)展[J]. 中國(guó)現(xiàn)代神經(jīng)疾病雜志,2023,23(10):889-895. WEN Z M,LIU W H,LIANG J,et al. Research progress on the interaction mechanism between ubiquitin-proteasome system and autophagy system after traumatic brain injury[J]. Chin J Contemp" Neurosurg,2023,23(10):889-895. doi:10.3969/j.issn.1672-6731.2023.10.004.
[9] SANDRONI C,NATALINI D,NOLANO J P. Temperature control after cardiac arrest[J]. Crit Care,2022,26(1):361. doi:10.1186/s13054-022-04238-z.
[10] WANG Y,ZHANG S,HE H,et al. Repositioning lomitapide to block ZDHHC5-dependant palmitoylation on SSTR5 leads to anti-proliferation effect in preclinical pancreatic cancer models[J]. Cell Death Discov,2023,9(1):60. doi:10.1038/s41420-023-01359-4.
[11] BERCHTOLD L A,ST?RLING Z M,ORTIS F,et al. Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and beta-cell apoptosis[J]. Proc Natl Acad Sci U S A,2011,108(37):E681-688. doi:10.1073/pnas.1104384108.
[12] MALGAPO M,LINDER M E. Substrate recruitment by zDHHC protein acyltransferases[J]. Open Biol,2021,11(4):210026. doi:10.1098/rsob.210026.
[13] GEDIK H,NGUYEN T H,PETERSON R E,et al. Identifying potential risk genes and pathways for neuropsychiatric and substance use disorders using intermediate molecular mediator information[J]. Front Genet,2023,14:1191264. doi:10.3389/fgene.2023.1191264.
[14] MECKLER X,ROSEMAN J,DAS P,et al. Reduced Alzheimer's disease β-amyloid deposition in transgenic mice expressing S-palmitoylation-deficient APH1aL and nicastrin[J]. J Neurosci,2010,30(48):16160-16169. doi:10.1523/JNEUROSCI.4436-10.2010.
[15] WANG B,LIU X, MENG X. miR-96-5p enhances cell proliferation and invasion via targeted regulation of ZDHHC5 in gastric cancer[J]. Biosci Rep,2020,40(4):BSR20191845.
[16] 谷子,唐勇,周程繼,等. 棕櫚酰化修飾的NOD_2在失血性休克動(dòng)物模型中的作用[J]. 天津醫(yī)藥,2022,50(10):1050-1055. GU Z,TANG Y,ZHOU C J,et al. The role of palmitoylated NOD2 in animal model of hemorrhagic shock[J]. Tianjin Med J,2022,50(10):1050-1055. doi:10.11958/20212779.
[17] MA Y,LIU H,OU Z,et al. DHHC5 facilitates oligodendrocyte development by palmitoylating and activating STAT3[J]. Glia,2022,70(2):379-392. doi:10.1002/glia.24113.
[18] LU Y,ZHENG Y,COYAUD é,et al. Palmitoylation of NOD1 and NOD2 is required for bacterial sensing[J]. Science,2019,366(6464):460-467. doi:10.1126/science.aau6391.
[19] NAYAR S,MORRISON J K,GIRI M,et al. A myeloid-stromal niche and gp130 rescue in NOD2-driven Crohn's disease[J]. Nature,2021,593(7858):275-281. doi:10.1038/s41586-021-03484-5.
[20] MATSUDA T,KAMBE N,UEKI Y,et al. Clinical characteristics and treatment of 50 cases of Blau syndrome in Japan confirmed by genetic analysis of the NOD2 mutation[J]. Ann Rheum Dis,2020,79(11):1492-1499. doi:10.1136/annrheumdis-2020-217320.
[21] LI Y,WANG Z. Interleukin 32 participates in cardiomyocyte-induced oxidative stress,inflammation and apoptosis during hypoxia/reoxygenation via the NOD2/NOX2/MAPK signaling pathway[J]. Exp Ther Med,2022,24(3):567. doi:10.3892/etm.2022.11504.
[22] SINGH K,HAN K,TILVE S,et al. Parkin targets NOD2 to regulate astrocyte endoplasmic reticulum stress and inflammation[J]. Glia,2018,66(11):2427-2437. doi:10.1002/glia.23482.
[23] SHI C X,WANG Y,CHEN Q,et al. Extracellular histone H3 induces pyroptosis during sepsis and may act through NOD2 and VSIG4/NLRP3 pathways[J]. Front Cell Infect Microbiol,2020,10:196. doi:10.3389/fcimb.2020.00196.
[24] ZHENG C,ZHU Z,WENG S,et al. NOD2 silencing promotes cell apoptosis and inhibits drug resistance in chronic lymphocytic leukemia by inhibiting the NF-κB signaling pathway[J]. J Biochem Mol Toxicol,2023,37(12):e23510. doi:10.1002/jbt.23510.
[25] LIU H,WEI X,KONG L,et al. NOD2 is involved in the inflammatory response after cerebral ischemia-reperfusion injury and triggers NADPH oxidase 2-derived reactive oxygen species[J]. Int J Biol Sci,2015,11(5):525-535. doi:10.7150/ijbs.10927.
(2023-12-04收稿 2024-02-11修回)
(本文編輯 陸榮展)