摘要:骨質(zhì)疏松癥是一種新興威脅,其特征是骨量和微結(jié)構(gòu)的系統(tǒng)性損傷,導(dǎo)致脆性骨折。外泌體是一種由細(xì)胞分泌到胞外的納米級(jí)囊泡微粒,具有與來(lái)源細(xì)胞相似的生物學(xué)活性,在細(xì)胞間通訊過程中扮演著重要角色。多種細(xì)胞來(lái)源的外泌體參與了骨代謝過程中骨相關(guān)細(xì)胞增殖分化的調(diào)控,并具有穩(wěn)定性高、無(wú)免疫原性及靶向能力強(qiáng)等優(yōu)勢(shì),彌補(bǔ)了傳統(tǒng)藥物及干細(xì)胞療法的不足。源自骨髓間充質(zhì)干細(xì)胞分泌的外泌體可以促進(jìn)骨再生,改善骨形態(tài)、生物力學(xué)和組織學(xué)損傷,而且機(jī)械微環(huán)境中源自骨髓間質(zhì)干細(xì)胞的外泌體在誘導(dǎo)成骨方面更有效,顯著增強(qiáng)骨髓間充質(zhì)干細(xì)胞的成骨作用,促進(jìn)骨再生。就間充質(zhì)干細(xì)胞的機(jī)械敏感性,機(jī)械響應(yīng)的功能化外泌體進(jìn)行綜述,探討其對(duì)治療骨質(zhì)疏松癥的潛在作用。
關(guān)鍵詞:骨質(zhì)疏松;外泌體;間質(zhì)干細(xì)胞;骨髓;機(jī)械刺激
中圖分類號(hào):R681.4 文獻(xiàn)標(biāo)志碼:A DOI:10.11958/20231662
Advances in the use of stem cell mechanical sensitivity against osteoporosis
ZHOU Liyun, WANG Yan, DONG Benchao, YANG Peichuan, SHEN Jiahui,
MA Jianxiong△, MA Xinlong
Tianjin Hospital, Tianjin University (Tianjin Hospital), Tianjin Key Laboratory of Orthopedic Biomechanics and Medical
Engineering, Tianjin Orthopaedic Institute, Tianjin 300211, China
△Corresponding Author E-mail: 2446086777@qq.com
Abstract: Osteoporosis is an emerging threat characterized by systemic damage to bone mass and microarchitecture leading to fragility fractures. Exosomes are nanosized vesicular particles secreted by cells into the extracellular compartment with biological activities similar to those of their cell of origin and play an important role in intercellular communication processes. Exosomes from multiple cell sources are involved in the regulation of bone-related cell proliferation and differentiation during bone metabolism, and have the advantages of high stability, non-immunogenicity and strong targeting ability, which make up for the shortcomings of traditional drug and stem cell therapies. Exosomes secreted from bone marrow mesenchymal stem cells (MSCs) can promote bone regeneration and improve morphology, biomechanics and histological damage, and exosomes derived from bone marrow mesenchymal stem cells (BMSCs) in the mechanical microenvironment are more effective in inducing osteogenesis, significantly enhancing the osteogenic effect of BMSCs and promoting bone regeneration. Therefore, this article provides a review on the mechano-sensitivity of MSCs, mechanical responsive functionalized exosomes of MSCs, and explores their potential role in the treatment of osteoporosis.
Key words:osteoporosis; exosomes; mesenchymal stem cells; bone marrow; mechanical stimulation
骨質(zhì)疏松癥(OS)是一種以骨量減少、微結(jié)構(gòu)破壞和脆性骨折為特征的疾病,與種族無(wú)關(guān),老年人發(fā)病率高[1]。骨折特別是髖部骨折和椎體壓縮骨折是最常見且最具破壞性的骨質(zhì)疏松并發(fā)癥。嚴(yán)重降低患者的生活質(zhì)量,并增加殘疾和病死率[2]。5%~10%的患者會(huì)出現(xiàn)骨折不愈合,部分原因是大的節(jié)段性骨缺損[3]。傳統(tǒng)方法通過傳遞生長(zhǎng)因子等生化信號(hào)分子來(lái)誘導(dǎo)干細(xì)胞進(jìn)入個(gè)體發(fā)育譜系。然而,維持這些生化信號(hào)分子生理濃度梯度和控制生長(zhǎng)因子在時(shí)間和空間上的釋放是尚未解決的難題。因此,通過物理手段(如機(jī)械刺激)調(diào)節(jié)干細(xì)胞的分化值得進(jìn)一步研究。組織工程骨是未來(lái)自體骨移植的一種有前景的替代方案。干細(xì)胞移植治療OS已在小鼠模型中顯示出初步的可行性和療效,但免疫排斥、細(xì)胞惡性腫瘤風(fēng)險(xiǎn)增加和干細(xì)胞歸巢等問題限制了其應(yīng)用[4]。外泌體是細(xì)胞分泌的納米級(jí)囊泡顆粒,具有與來(lái)源細(xì)胞相似的生物活性,在細(xì)胞間信息傳遞中發(fā)揮重要作用[5]。研究發(fā)現(xiàn),源自骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,BMSCs)的外泌體參與骨組織細(xì)胞的增殖和分化[6]。外泌體穩(wěn)定性高、無(wú)免疫原性、靶向能力強(qiáng),彌補(bǔ)了傳統(tǒng)藥物和干細(xì)胞治療的不足。外泌體攜帶的多種內(nèi)含物可以直接作用于這些骨組織細(xì)胞[7]。因此,研究來(lái)源于多種骨骼細(xì)胞的外泌體參與骨骼細(xì)胞增殖和分化的調(diào)控過程,可以為骨科疾病的研究提供理論基礎(chǔ),對(duì)于骨科疾病的診斷和治療具有一定的臨床意義。目前,已有研究發(fā)現(xiàn)機(jī)械刺激(mechanical stimulation,MS)可通過影響外泌體內(nèi)相關(guān)生化因子水平的生物信號(hào)傳遞,從而治療OS[8]。由于MS設(shè)備的限制,很難在機(jī)械微環(huán)境中培養(yǎng)大量BMSCs并獲得足夠多的機(jī)械刺激-外泌體(MS-EXOs)。因此,了解MS促進(jìn)外泌體成骨分化、血管生成、免疫調(diào)節(jié)等活性機(jī)制具有重要意義。
1 MS調(diào)節(jié)骨再生微環(huán)境周圍的間充質(zhì)干細(xì)胞
骨再生涉及免疫細(xì)胞的炎癥反應(yīng)、內(nèi)皮細(xì)胞的血管形成和間充質(zhì)干細(xì)胞的成骨過程。因此,微環(huán)境內(nèi)的細(xì)胞間通訊對(duì)于骨再生和BMSCs與巨噬細(xì)胞、內(nèi)皮細(xì)胞、骨細(xì)胞等其他細(xì)胞間的關(guān)系至關(guān)重要。確定MS在成骨過程中的作用具有重要意義。
1.1 MS在炎癥反應(yīng)中的作用 研究顯示,機(jī)械敏感區(qū)的間充質(zhì)干細(xì)胞可以感知MS,并將機(jī)械信號(hào)轉(zhuǎn)化為化學(xué)信號(hào),引發(fā)局部炎癥和骨質(zhì)破壞,最終導(dǎo)致OS[9]。骨再生修復(fù)主要通過促進(jìn)促炎型(M1型)巨噬細(xì)胞向抗炎型(M2型)巨噬細(xì)胞轉(zhuǎn)化,以達(dá)到促進(jìn)炎癥消退和成骨過程。剪切應(yīng)力可誘導(dǎo)間充質(zhì)干細(xì)胞分泌抗氧化和抗炎因子,促進(jìn)趨化因子募集,以抑制腫瘤壞死因子α(tumor necrosis factorα,TNF-α)合成和炎癥反應(yīng)。有研究通過破壞黏著斑激酶(focal adhesion kinase,F(xiàn)AK)和環(huán)氧合酶2(cyclooxygenase-2,COX2)信號(hào)通路上的關(guān)鍵因子,發(fā)現(xiàn)可減少剪切應(yīng)力誘導(dǎo)的炎癥介質(zhì)產(chǎn)生[10]。除剪切應(yīng)力外,動(dòng)態(tài)壓縮也會(huì)加速M(fèi)1型向M2型轉(zhuǎn)化。Zhang等[11]開發(fā)了一種基于細(xì)胞外基質(zhì)(extracellular matrix,ECM)的羥基磷灰石支架,該支架是通過冷凍干燥壓縮刺激BMSCs的ECM制成;這種生物支架可加速巨噬細(xì)胞從M1表型向M2表型的極化,從而促進(jìn)骨再生。最近研究發(fā)現(xiàn),MS是通過驅(qū)動(dòng)MSC對(duì)TNF-α的內(nèi)吞作用,而不是對(duì)TNF-α基因表達(dá)的調(diào)控來(lái)維持TNF-α水平穩(wěn)定,進(jìn)而調(diào)控MSC的增殖和成骨分化過程[12]。另有研究發(fā)現(xiàn),受到連續(xù)壓縮負(fù)荷的牙周韌帶干細(xì)胞能夠通過產(chǎn)生硫化氫,從而增加M1中包括TNF-α在內(nèi)的相關(guān)細(xì)胞因子表達(dá),進(jìn)而誘導(dǎo)巨噬細(xì)胞極化,激活破骨細(xì)胞活化,促進(jìn)牙槽骨重塑[13]。
1.2 MS在內(nèi)皮細(xì)胞血管生成中的作用 血管形成與成骨過程密切相關(guān),是骨再生的重要組成部分。在骨再生過程中,BMSCs和血管內(nèi)皮細(xì)胞(vascular endothelial cell,VEC)通過旁分泌介質(zhì)相互通訊以促進(jìn)骨生成。血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)是一種調(diào)節(jié)成骨和促進(jìn)血管形成的信號(hào)分子,在MS誘導(dǎo)的成骨中具有重要作用。Jiang等[14]研究發(fā)現(xiàn),拉伸刺激BMSCs分泌VEGF不僅可促進(jìn)血管形成,還可促進(jìn)VEC釋放與骨形成相關(guān)的生長(zhǎng)因子產(chǎn)生,如骨形成蛋白2(bone morphogenetic protein-2,BMP-2)和胰島素樣生長(zhǎng)因子(nsulin-like growth factor,IGF),進(jìn)而調(diào)節(jié)BMSCs的成骨過程。Bandaru等[15]發(fā)現(xiàn),Yes相關(guān)蛋白(yes-associated protein,YAP)是介導(dǎo)BMSC感受外部MS力學(xué)環(huán)境變化的關(guān)鍵信號(hào)分子,受到動(dòng)態(tài)機(jī)械壓縮的BMSC可通過增強(qiáng)YAP信號(hào)分子表達(dá),從而促進(jìn)VEGF的分泌水平。另有研究發(fā)現(xiàn),MS可以通過下調(diào)BMSCs外泌體內(nèi)miR-214-3p表達(dá)水平,從而刺激H型血管形成和VEGF分泌[16]。Li等[17]通過miRNA微陣列分析發(fā)現(xiàn),循環(huán)拉伸能夠抑制內(nèi)皮祖細(xì)胞(endothelial progenitor cell,EPC)miR-129-1-3p表達(dá),激活成骨特異性轉(zhuǎn)錄因子Runx2和VEGF,促進(jìn)內(nèi)皮祖細(xì)胞的內(nèi)皮分化和血管生成。另外,加載應(yīng)用模式可能會(huì)影響血運(yùn)重建,晚期施加壓縮應(yīng)力可能是促進(jìn)血管生成的較好組合[18]。
1.3 MS在調(diào)節(jié)骨組織細(xì)胞中的作用 骨細(xì)胞通過分泌調(diào)節(jié)BMSCs基因表達(dá)的可溶性因子來(lái)響應(yīng)外部MS。Du等[19]研究顯示,通過促進(jìn)骨細(xì)胞分泌白血病抑制因子(leukemia inhibitory factor,LIF),可機(jī)械調(diào)節(jié)成骨細(xì)胞-破骨細(xì)胞偶聯(lián)。Eichholz等[20]通過蛋白質(zhì)組學(xué)全面表征了成骨細(xì)胞在流體剪切應(yīng)力后分泌的蛋白質(zhì),發(fā)現(xiàn)與外泌體相關(guān)的蛋白質(zhì)過度表達(dá),例如鈣離子結(jié)合和磷酸絲氨酸結(jié)合蛋白在MS之后的外泌體中富集,而鈣離子和帶負(fù)電荷的氨基酸(如磷酸絲氨酸)也在礦化、羥基磷灰石成核和生長(zhǎng)中起關(guān)鍵作用。此外,用收集的外泌體培養(yǎng)BMSCs可使BMSCs成骨分化增強(qiáng),表明MS可通過外泌體調(diào)節(jié)BMSCs行為,進(jìn)而促進(jìn)骨細(xì)胞分化。Lv等[21]發(fā)現(xiàn),MS后骨細(xì)胞產(chǎn)生的外泌體也可促進(jìn)人牙周膜干細(xì)胞(PDLSC)的成骨分化。一般認(rèn)為,MS誘導(dǎo)BMSCs向特定細(xì)胞類型分化的同時(shí)可抑制其向其他細(xì)胞類型的分化。YAP/TAZ復(fù)合物被認(rèn)為是決定細(xì)胞譜系的機(jī)械信號(hào)轉(zhuǎn)導(dǎo)的主要調(diào)節(jié)器,而Ras同源基因家族成員A(RhoA)信號(hào)傳導(dǎo)和Hippo核心激酶大腫瘤抑制因子是YAP/TAZ活性的調(diào)節(jié)劑[22]。低強(qiáng)度脈沖超聲治療的MS通過Rho相關(guān)激酶激活Tpl2-MEK-ERK信號(hào)通路,從而抑制BMSCs的脂肪分化并促進(jìn)其向成骨方向分化[23]。另外,Rho家族GTP酶還是參與肌動(dòng)蛋白細(xì)胞骨架重塑的關(guān)鍵調(diào)節(jié)分子,肌動(dòng)蛋白會(huì)受到機(jī)械應(yīng)力的影響(流體剪切力、微重力、牽張拉力)而發(fā)生聚合,進(jìn)而促進(jìn)成骨分化[24]。這可能是由于MS導(dǎo)致了ECM硬度發(fā)生改變,從而決定了YAP/TAZ的亞細(xì)胞定位和BMSCs譜系分化。
2 BMSCs衍生的外泌體調(diào)節(jié)骨微環(huán)境
在雌激素缺乏、異常機(jī)械應(yīng)力和藥物不良反應(yīng)等病理?xiàng)l件下,骨形成和骨吸收的動(dòng)態(tài)穩(wěn)定性被破壞,導(dǎo)致骨質(zhì)疏松、骨折或骨缺損不完全愈合[25]。因此,調(diào)節(jié)骨吸收和骨形成的動(dòng)態(tài)平衡是防止骨量下降的基本策略。研究表明,BMSCs可能通過旁分泌功能在組織再生和修復(fù)中發(fā)揮更重要的作用,而不是直接替代受損組織[26-27]。富含大量蛋白質(zhì)、脂質(zhì)和核酸(miRNA、ncRNA和DNA)等生物活性分子的細(xì)胞外囊泡(包括外泌體)被認(rèn)為是BMSCs旁分泌過程中細(xì)胞內(nèi)信號(hào)轉(zhuǎn)導(dǎo)的關(guān)鍵介質(zhì),外泌體通過囊泡中的多種生物活性分子作用于各種受體細(xì)胞,在免疫監(jiān)視、血管生成、腫瘤發(fā)生、代謝和炎癥等方面發(fā)揮重要作用。因此,確定BMSCs-EXOs在調(diào)節(jié)骨吸收和骨形成動(dòng)態(tài)平衡過程中的作用非常重要。
2.1 MicroRNA(miRNA)介導(dǎo)骨代謝 miRNA是進(jìn)化上保守的小非編碼RNA,長(zhǎng)度約為22個(gè)核苷酸,參與細(xì)胞生長(zhǎng)、分化、遷移和凋亡等生物學(xué)過程。通常情況下,miRNA可以調(diào)節(jié)成骨細(xì)胞、破骨細(xì)胞和血管內(nèi)皮細(xì)胞增殖分化等多個(gè)過程。然而,由于成骨誘導(dǎo)能力有限,單獨(dú)的外泌體顯示出較差的骨再生效應(yīng)。因此,通過細(xì)胞工程對(duì)BMSCs-EXOs含量進(jìn)行適當(dāng)修飾以構(gòu)建工程外泌體,例如基因修飾或蛋白質(zhì)修飾,為增強(qiáng)BMSCs-EXOs的治療效果提供了一種有吸引力的策略。Li等[28]通過miRNA測(cè)序分析發(fā)現(xiàn),BMSCs-EXOs中高表達(dá)的miR-186可以促進(jìn)成骨細(xì)胞增殖;進(jìn)一步的研究表明,BMSCs-EXOs-miR-186可能通過直接靶向Mob激酶激活因子1(Mob1)來(lái)增強(qiáng)成骨作用,而Mob1是抑制Hippo信號(hào)通路的關(guān)鍵基因。另一項(xiàng)研究表明,BMSCs-EXOs中miR-150-3p的過表達(dá)上調(diào)了Runx2和Osterix等成骨相關(guān)轉(zhuǎn)錄因子的表達(dá),促進(jìn)成骨細(xì)胞增殖并抑制細(xì)胞凋亡;而抑制BMSCs-EXOs中的miR-150-3p則表現(xiàn)出相反的效果[29]。因此,BMSCs-EXOs中的miR-150-3p能夠促進(jìn)成骨細(xì)胞的增殖和分化。Zhang等[30]發(fā)現(xiàn),BMSCs-EXOs可以將miR-935遞送到成骨細(xì)胞中,抑制其靶基因信號(hào)轉(zhuǎn)導(dǎo)子和轉(zhuǎn)錄激活子1(STAT1)的表達(dá),從而促進(jìn)成骨細(xì)胞增殖并增強(qiáng)堿性磷酸酶(alkaline phosphatase,ALP)活性和鈣化結(jié)節(jié)。STAT1表達(dá)的上調(diào)可以通過阻礙Runx2的核轉(zhuǎn)位來(lái)調(diào)節(jié)成骨細(xì)胞分化[31]。因此,miR-935封裝的BMSCs-EXOs可能通過靶向STAT1來(lái)促進(jìn)Runx2核定位,從而增強(qiáng)成骨細(xì)胞增殖并啟動(dòng)成骨分化。上述研究表明,通過適當(dāng)修飾BMSCs-EXOs中封裝的miRNA,可以精確調(diào)控骨形成的起始。另有研究顯示,BMSCs-EXOs呈劑量依賴性地增加ALP活性,促進(jìn)BMSCs的成骨分化和基質(zhì)礦化[32]。因此,上述BMSCs-EXOs-miRNA對(duì)成骨分化的差異性調(diào)控可能是由于不同實(shí)驗(yàn)間BMSCs-EXOs濃度和劑量的差異所致。另外,與年輕大鼠相比,老年大鼠的BMSCs干性和成骨分化顯著降低[33]。不同的細(xì)胞微環(huán)境可能導(dǎo)致BMSCs-EXOs含量的差異。此外,與年輕的BMSCs-EXOs相比,衰老的BMSCs-EXOs中miR-29a水平顯著降低,這意味著衰老的外泌體中miR-29a水平的降低可能導(dǎo)致與年齡相關(guān)的骨丟失,并且miR-29a裝載的BMSCs-EXOs可能是年齡相關(guān)性骨質(zhì)流失的潛在治療方法[34]。激活Wnt/β-連環(huán)蛋白信號(hào)傳導(dǎo)和BMP/Smad信號(hào)傳導(dǎo)是BMSCs-EXOs中的特定miRNA,如miR-20a、miR-21和miR-29a負(fù)向調(diào)節(jié)破骨細(xì)胞生成,并促進(jìn)骨形成的重要信號(hào)通路[35]。
2.2 miRNA介導(dǎo)血管生成調(diào)節(jié)骨代謝 BMSCs-EXOs可能通過調(diào)節(jié)血管生成來(lái)維持骨穩(wěn)態(tài)。研究顯示,BMSCs-EXOs通過促進(jìn)血管生成和成骨來(lái)促進(jìn)骨不連愈合[36]。BMSCs-EXOs中含有豐富的miRNA,其可能參與介導(dǎo)BMSCs-EXOs對(duì)骨血管生成的調(diào)節(jié)。Lu等[34]發(fā)現(xiàn),BMSCs-EXOs中富含miR-29a,其可被人臍靜脈內(nèi)皮細(xì)胞(HUVEC)攝取,促進(jìn)后者的增殖、遷移,從而促進(jìn)血管生成。另外,新發(fā)現(xiàn)的血管亞型H型血管可募集骨祖細(xì)胞并將成骨與血管生成結(jié)合起來(lái),這被認(rèn)為是骨重塑和修復(fù)過程中的關(guān)鍵事件[37]。然而,Lu等[34]在預(yù)測(cè)miR-29a的靶基因中沒有發(fā)現(xiàn)任何基因參與H型血管形成相關(guān)的信號(hào)傳導(dǎo)或通路,也未見miR-29a對(duì)H型血管生成的作用,這也意味著BMSCs-EXOs-miR-29a可能通過尚未發(fā)現(xiàn)的機(jī)制來(lái)調(diào)節(jié)成骨過程中的血管生成。另有研究顯示,機(jī)械負(fù)荷可通過下調(diào)外泌體miR-214-3p來(lái)增強(qiáng)H型血管的形成,從而促進(jìn)骨血管生成并防止去卵巢(ovariectomy,OVX)誘導(dǎo)的骨質(zhì)流失;BMSCs-miR-214-3p的過表達(dá)可能下調(diào)VEGF的表達(dá),抑制HUVEC的血管形成和細(xì)胞遷移,而抑制BMSCs-miR-214-3p的表達(dá)可以逆轉(zhuǎn)上述結(jié)果;對(duì)于H型血管生成很重要的VEGF的表達(dá)也受到miR-214-3p的調(diào)節(jié),H型血管與響應(yīng)機(jī)械應(yīng)力的外泌體miR-214-3p表達(dá)也有關(guān),但具體的調(diào)控機(jī)制尚不完全清楚[16]。
此外,Liu等[38]證實(shí),與常氧培養(yǎng)的人臍帶間充質(zhì)干細(xì)胞(ucMSCs)相比,缺氧培養(yǎng)的ucMSC-EXOs(Hypo-ucMSC-EXOs)可能通過激活缺氧誘導(dǎo)因" "子-1α(hypoxia inducible factor-1α,HIF-1α)的表達(dá)促進(jìn)Hypo-ucMSC-EXOs中miR-126的高表達(dá),引起血管生成、增殖和遷移,促進(jìn)骨折愈合。未來(lái)的研究還可以進(jìn)一步探討B(tài)MSCs-EXOs在缺氧條件下骨血管生成的調(diào)控機(jī)制。
3 MS下外泌體對(duì)骨微環(huán)境的作用
外泌體已經(jīng)被廣泛研究和應(yīng)用于組織工程和再生醫(yī)學(xué)領(lǐng)域,但是克服外泌體產(chǎn)量低的問題仍然是將基于無(wú)細(xì)胞療法轉(zhuǎn)化為臨床實(shí)踐的一大挑戰(zhàn)。目前研究顯示,通過生物反應(yīng)器應(yīng)用MS(拉伸、壓縮、流動(dòng))進(jìn)行細(xì)胞3D培養(yǎng)成為提高外泌體產(chǎn)量一種極具潛力的方式[39]。Hao等[40]利用微流體裝置證實(shí),機(jī)械擠壓可通過短暫穿孔細(xì)胞膜而顯著增強(qiáng)間充質(zhì)干細(xì)胞外泌體的產(chǎn)量(約4倍),并且不會(huì)影響外泌體的生物功能。此外,MS還是多種生理和病理過程的重要調(diào)節(jié)劑,影響外泌體中多種生物活性物質(zhì)(蛋白質(zhì)、miRNA、mRNA等)的分泌。例如,循環(huán)拉伸和連續(xù)拉伸均可通過調(diào)節(jié)肺上皮細(xì)胞特定miRNA的表達(dá),從而調(diào)節(jié)肺發(fā)育[41]。來(lái)自循環(huán)拉伸處理的牙周膜細(xì)胞的外泌體可通過抑制巨噬細(xì)胞中白細(xì)胞介素(interleukin,IL)-1β的產(chǎn)生和焦亡,維持牙周免疫和炎癥穩(wěn)態(tài)[42]。在骨科領(lǐng)域,機(jī)械負(fù)荷是發(fā)育、重塑和骨折修復(fù)過程中新骨形成的有效調(diào)節(jié)劑。Xiao等[43]發(fā)現(xiàn),與靜態(tài)培養(yǎng)BMSCs分泌的外泌體處理組相比,機(jī)械拉伸處理后BMSCs分泌的外泌體通過在體外減弱NF-κB信號(hào)通路活化水平,從而對(duì)破骨細(xì)胞分化產(chǎn)生了持續(xù)的抑制。但該研究未對(duì)MS刺激后分泌的外泌體內(nèi)成分(miRNA、蛋白質(zhì)等)變化進(jìn)行研究。既往研究表明,成骨細(xì)胞和骨細(xì)胞釋放的外泌體可以誘導(dǎo)BMSCs成骨分化,并且在MS后這種分化會(huì)增強(qiáng)[20]。這種負(fù)荷同樣被證明可以調(diào)節(jié)血管生成。Shen等[44]對(duì)MS之后的骨細(xì)胞分泌的外泌體內(nèi)miRNA進(jìn)行高通量分析發(fā)現(xiàn),miRNA150-5p可能是介導(dǎo)MA-EXOs促進(jìn)血管生成的主要非蛋白質(zhì)物質(zhì),而并非VEGF,因?yàn)樵诠羌?xì)胞來(lái)源的MA-EV中幾乎沒有檢測(cè)到VEGF表達(dá)。體外研究發(fā)現(xiàn),膝關(guān)節(jié)機(jī)械負(fù)荷可通過下調(diào)BMSCs-EXOs的miR-214?3p表達(dá)來(lái)促進(jìn)血管形成,并且升高VEGF表達(dá)水平,認(rèn)為這可能與MS激活的細(xì)胞不同有關(guān)[16]。
4 小結(jié)
在臨床實(shí)踐中,外泌體已經(jīng)被用于促進(jìn)骨折愈合、軟組織修復(fù)、心血管病變的治療等多個(gè)領(lǐng)域。盡管外泌體在多種療法中取得了重大成就,但挑戰(zhàn)仍然存在。骨重塑是一個(gè)復(fù)雜且多因素的過程,深受機(jī)械力的影響。不同的機(jī)械力會(huì)對(duì)骨組織中的多種細(xì)胞產(chǎn)生不同的影響,激活多種途徑。本文分析了間充質(zhì)干細(xì)胞外泌體中的miRNA如何通過與周圍細(xì)胞的相互作用來(lái)精細(xì)調(diào)節(jié)骨代謝,此外,還探討了MS后外泌體產(chǎn)量的變化以及這些外泌體在不同生物學(xué)領(lǐng)域功能的轉(zhuǎn)變,從而進(jìn)一步揭示了MS對(duì)骨再生過程的多維度影響。雖然外泌體內(nèi)富含多種生物活性物質(zhì),但外泌體如何介導(dǎo)骨組織周圍細(xì)胞相應(yīng)MS并促進(jìn)骨再生的潛在機(jī)制尚不清楚。未來(lái),MS將有望發(fā)展成為骨組織工程中外泌體治療骨科疾病的有效手段。
參考文獻(xiàn)
[1] LIANG B,BURLEY G,LIN S,et al. Osteoporosis pathogenesis and treatment: existing and emerging avenues[J]. Cell Mol Biol Lett,2022,27(1):72. doi:10.1186/s11658-022-00371-3.
[2] EBELING P R,AKESSON K,BAUER D C,et al. The efficacy and safety of vertebral augmentation:a second ASBMR task force report[J]. J Bone Miner Res,2019,34(1):3-21. doi:10.1002/jbmr.3653.
[3] HOLMES D. Non-union bone fracture:a quicker fix[J]. Nature,2017,550(7677):S193. doi:10.1038/550S193a.
[4] AGHEBATI-MALEKI L,DOLATI S,ZANDI R,et al. Prospect of mesenchymal stem cells in therapy of osteoporosis:a review[J]. J Cell Physiol,2019,234(6):8570-8578. doi:10.1002/jcp.27833.
[5] ZHANG L,LIN Y,ZHANG X,et al. Research progress of exosomes in orthopedics[J]. Front Genet,2022,13:915141. doi:10.3389/fgene.2022.915141.
[6] XIE X,XIONG Y,PANAYI A C,et al. Exosomes as a novel approach to reverse osteoporosis:a review of the literature[J]. Front Bioeng Biotechnol,2020,8:594247. doi:10.3389/fbioe.2020.594247.
[7] KANG Y,XU J,MENG L,et al. 3D bioprinting of dECM/Gel/QCS/nHAp hybrid scaffolds laden with mesenchymal stem cell-derived exosomes to improve angiogenesis and osteogenesis[J]. Biofabrication,2023,15(2). doi:10.1088/1758-5090/acb6b8.
[8] 劉華,陳曉芳,徐曄,等. 寬筋散熱熨治療骨質(zhì)疏松性椎體壓縮性骨折經(jīng)皮椎體成形術(shù)后殘留腰背痛的療效[J]. 中國(guó)中西醫(yī)結(jié)合外科雜志,2024,30(2):209-214. LIU H,CHEN X F,XU Y,et al." Efficacy observation on Kuanjin Powder hot ironing in the treatment of residual low back pain in patients with osteoporotic vertebral compression fracture after PVP[J]. Chinese Journal of Integrated Traditional Chinese and Western Medicine Surgery,2024,30(2):209-214. doi:10.3969/j.issn.1007-6948.2024.02.012.
[9] CAMBRé I,GAUBLOMME D,BURSSENS A,et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis[J]. Nat Commun,2018,9(1):4613. doi:10.1038/s41467-018-06933-4.
[10] LEE H J,DIAZ M F,PRICE K M,et al. Fluid shear stress activates YAP1 to promote cancer cell motility[J]. Nat Commun,2017,8:14122. doi:10.1038/ncomms14122.
[11] ZHANG P,LIU X,GUO P,et al. Effect of cyclic mechanical loading on immunoinflammatory microenvironment in biofabricating hydroxyapatite scaffold for bone regeneration[J]. Bioact Mater,2021,6(10):3097-3108. doi:10.1016/j.bioactmat.2021.02.024.
[12] YU W,CHEN C,KOU X,et al. Mechanical force-driven TNFα endocytosis governs stem cell homeostasis[J]. Bone Res,2021,8(1):44. doi:10.1038/s41413-020-00117-x.
[13] HE D,LIU F,CUI S,et al. Mechanical load-induced H2S production by periodontal ligament stem cells activates M1 macrophages to promote bone remodeling and tooth movement via STAT1[J]. Stem Cell Res Ther,2020,11(1):112. doi:10.1186/s13287-020-01607-9.
[14] JIANG Y N,ZHAO J,CHU F T,et al. Tension-loaded bone marrow stromal cells potentiate the paracrine osteogenic signaling of co-cultured vascular endothelial cells[J]. BiolOpen,2018,7(6):bio032482. doi:10.1242/bio.032482.
[15] BANDARU P,CEFALONI G,VAJHADIN F,et al. Mechanical cues regulating proangiogenic potential of human mesenchymal stem cells through YAP-Mediated mechanosensing[J]. Small,2020,16(25):2001837. doi:10.1002/smll.202001837.
[16] WANG X,LI X,LI J,et al. Mechanical loading stimulates bone angiogenesis through enhancing type H vessel formation and downregulating exosomal miR-214-3p from bone marrow-derived mesenchymal stem cells[J]. FASEB J,2021,35(1):e21150. doi:10.1096/fj.202001080RR.
[17] LI N,WANG W B,BAO H,et al. MicroRNA-129-1-3p regulates cyclic stretch?induced endothelial progenitor cell differentiation by targeting Runx2[J]. J Cell Biochem,2019,120(4):5256-5267. doi:10.1002/jcb.27800.
[18] CLAES L,MEYERS N,SCHüLKE J,et al. The mode of interfragmentary movement affects bone formation and revascularization after callus distraction[J]. PLoS One,2018,13(8):e0202702. doi:10.1371/journal.pone.0202702.
[19] DU J,YANG J,HE Z,et al. Osteoblast and osteoclast activity affect bone remodeling upon regulation by mechanical loading-induced leukemia inhibitory factor expression in osteocytes[J]. Front Mol Biosci,2020,7:585056. doi:10.3389/fmolb.2020.585056.
[20] EICHHOLZ K F,WOODS I,RIFFAULT M,et al. Human bone marrow stem/stromal cell osteogenesis is regulated via mechanically activated osteocyte-derived extracellular vesicles[J]. Stem Cells Transl Med,2020,9(11):1431-1447. doi:10.1002/sctm.19-0405.
[21] LV P Y,GAO P F,TIAN G J,et al. Osteocyte-derived exosomes induced by mechanical strain promote human periodontal ligament stem cell proliferation and osteogenic differentiation via the miR-181b-5p/PTEN/AKT signaling pathway[J]. Stem Cell Res Ther,2020,11(1):295. doi:10.1186/s13287-020-01815-3.
[22] DAMKHAM N,ISSARAGRISIL S,LORTHONGPANICH C. Role of YAP as a mechanosensing molecule in stem cells and stem cell-derived hematopoietic cells[J]. Int J Mol Sci,2022,23(23):14634. doi:10.3390/ijms232314634.
[23] KUSUYAMA J,BANDOW K,SHAMOTO M,et al. Low intensity pulsed ultrasound(LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway[J]. J Biol Chem,2014,289(15):10330-10344. doi:10.1074/jbc.M113.546382.
[24] KHAN A U,QU R,F(xiàn)AN T,et al. A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells[J]. Stem Cell Res Ther,2020,11(1):283. doi:10.1186/s13287-020-01789-2.
[25] IQBAL J,YUEN T,KIM S M,et al. Opening windows for bone remodeling through a SLIT[J]. J Clin Invest,2018,128(4):1255-1257. doi:10.1172/JCI120325.
[26] WANG Z,WANG Y,WANG Z,et al. Engineered mesenchymal stem cells with enhanced tropism and paracrine secretion of cytokines and growth factors to treat traumatic brain injury[J]. Stem Cells,2015,33(2):456-467. doi:10.1002/stem.1878.
[27] 聶進(jìn),劉代順,張建勇,等. 臍帶間充質(zhì)干細(xì)胞外泌體對(duì)慢性阻塞性肺疾病大鼠肺部炎癥的作用機(jī)制探討[J]. 天津醫(yī)藥,2023,51(12):1326-1331.NIE J,LIU D S,ZHANG J Y,et al. The effect and mechanism of exosomes from umbilical cord mesenchymal stem cells on pulmonary inflammation in chronic obstructive pulmonary disease rats[J]. Tianjin Med J,2023,51(12):1326-1331. doi:10.11958/20230708.
[28] LI L,ZHOU X,ZHANG J T,et al. Exosomal miR-186 derived from BMSCs promote osteogenesis through hippo signaling pathway in postmenopausal osteoporosis[J]. J Orthop Surg Res,2021,16(1):23. doi:10.1186/s13018-020-02160-0.
[29] QIU M,ZHAI S,F(xiàn)U Q,et al. Bone marrow mesenchymal stem cells-derived exosomal MicroRNA-150-3p promotes osteoblast proliferation and differentiation in osteoporosis[J]. Hum Gene Ther,2021,32(13/14):717-729. doi:10.1089/hum.2020.005.
[30] ZHANG Y,CAO X,LI P,et al. microRNA-935-modified bone marrow mesenchymal stem cells-derived exosomes enhance osteoblast proliferation and differentiation in osteoporotic rats[J]. Life Sci,2021,272:119204. doi:10.1016/j.lfs.2021.119204.
[31] LI J,HE X,WEI W,et al. MicroRNA-194 promotes osteoblast differentiation via downregulating STAT1[J]. Biochem Biophys Res Commun,2015,460(2):482-488. doi:10.1016/j.bbrc.2015.03.059.
[32] 錢士達(dá),于雪峰. 骨髓間充質(zhì)干細(xì)胞治療激素性股骨頭壞死的研究進(jìn)展[J]. 天津醫(yī)藥,2023,51(5):553-556. QIAN S D,YU X F. Research progress on bone marrow mesenchymal stem cells in the treatment ofsteroid-induced osteonecrosis of femoral head[J]. Tianjin Med J,2023,51(5):553-556. doi:10.11958/20221802.
[33] JIA Y,QIU S,XU J,et al. Exosomes secreted by young mesenchymal stem cells promote new bone formation during distraction osteogenesis in older rats[J]. Calcif Tissue Int,2020,106(5):509-517. doi:10.1007/s00223-019-00656-4.
[34] LU G D,CHENG P,LIU T,et al. Bmsc-derived exosomal miR-29a promotes angiogenesis and osteogenesis[J]. Front Cell Dev Biol,2020,8:608521. doi:10.3389/fcell.2020.608521.
[35] NAKAO Y,F(xiàn)UKUDA T,ZHANG Q,et al. Exosomes from TNF-α?treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss[J]. Acta Biomater,2021,122:306-324. doi:10.1016/j.actbio.2020.12.046.
[36] HU H,ZHANG H,BU Z,et al. Small extracellular vesicles released from bioglass/hydrogel scaffold promote vascularized bone regeneration by transferring miR-23a-3p[J]. Int J Nanomed,2022,17:6201-6220. doi:10.2147/IJN.S389471.
[37] PENG Y,WU S,LI Y,et al. Type H blood vessels in bone modeling and remodeling[J]. Theranostics,2020,10(1):426-436. doi:10.7150/thno.34126.
[38] LIU W,LI L,RONG Y,et al. Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126[J]. Acta Biomater,2020,103:196-212. doi:10.1016/j.actbio.2019.12.020.
[39] GUO S,DEBBI L,ZOHAR B,et al. Stimulating extracellular vesicles production from engineered tissues by mechanical Forces[J]. Nano Lett,2021,21(6):2497-2504. doi:10.1021/acs.nanolett.0c04834.
[40] HAO R,HU S,ZHANG H,et al. Mechanical stimulation on a microfluidic device to highly enhance small extracellular vesicle secretion of mesenchymal stem cells[J]. Mater Today Bio,2023,18:100527. doi:10.1016/j.mtbio.2022.100527.
[41] NAJRANA T,MAHADEO A,ABU-EID R,et al. Mechanical stretch regulates the expression of specific miRNA in extracellular vesicles released from lung epithelial cells[J]. J Cell Physiol,2020,235(11):8210-8223. doi:10.1002/jcp.29476.
[42] WANG Z,MARUYAMA K,SAKISAKA Y,et al. Cyclic stretch force induces periodontal ligament cells to secrete exosomes that suppress IL-1β production through the inhibition of the NF-κB signaling pathway in macrophages[J]. Front Immunol,2019,10:1310. doi:10.3389/fimmu.2019.01310.
[43] XIAO F,ZUO B,TAO B,et al. Exosomes derived from cyclic mechanical stretch-exposed bone marrow mesenchymal stem cells inhibit RANKL-induced osteoclastogenesis through the NF-κB signaling pathway[J]. Ann Transl Med,2021,9(9):798. doi:10.21037/atm-21-1838.
[44] SHEN N,MAGGIO M,WOODS I,et al. Mechanically activated mesenchymal-derived bone cells drive vessel formation via an extracellular vesicle mediated mechanism[J]. J Tissue Eng,2023,14:20417314231186918. doi:10.1177/20417314231186918.
(2023-11-02收稿 2024-01-25修回)
(本文編輯 陸榮展)