小學(xué)數(shù)學(xué)解決問題是小學(xué)數(shù)學(xué)教學(xué)中的最難點之一。本人結(jié)合近三十年的小學(xué)數(shù)學(xué)教學(xué)工作的經(jīng)驗與探索,從問題解決的方法技巧入手,初步歸納出:兩種基本方法(數(shù)量關(guān)系法、對應(yīng)法)一種輔助方法(畫圖法)——簡稱“兩基一輔”的問題解決的方法技巧,讓小學(xué)中高段的孩子都能看會學(xué)會,從而達(dá)到愛上數(shù)學(xué)、快樂學(xué)習(xí)的目的。
用數(shù)量關(guān)系法解題,寫出數(shù)量關(guān)系等式是關(guān)鍵。怎樣才能寫出數(shù)量關(guān)系等式呢?先把問題解決分為條件與問題兩部分,接著在“條件”中找到相當(dāng)于等號的字或詞(如,等于、是、約是、占、比、相當(dāng)于等)換成“=”(當(dāng)然有時問題部分也有條件),然后對應(yīng)調(diào)整等號兩端(最近)的數(shù)量就變成數(shù)量關(guān)系等式;若找不到相當(dāng)于等號的字或詞,則利用題中內(nèi)含的基本數(shù)量關(guān)系(如,速度×?xí)r間=路程,長×寬=長方形面積)或生活常識(如,原有量-用去量=剩下量)也可以寫出數(shù)量關(guān)系等式。
例如,師傅加工零件80個,比徒弟加工零件個數(shù)的2倍少10個,徒弟加工零件多少個?分析:條件中的“比”換成“=”,該等號左邊的最近相關(guān)數(shù)量是“師傅加工零件80個”,該等號右邊的最近相關(guān)數(shù)量是“徒弟加工零件的個數(shù)”“的(即×2)”“少(即-10)”,就是80=徒弟加工零件的個數(shù)×2-10,即?×2-10=80,然后再用方程或列算式解出徒弟加工零件的個數(shù)。
利用加減乘除各部分關(guān)系或方程列式解答是水到渠成的。如上題,算術(shù)法:(80+10)÷2;方程法:解:設(shè)徒弟加工x個。2 x -10=80,然后解答即可。

可以用對應(yīng)法(等量關(guān)系)解題。問題解決中怎樣用對應(yīng)關(guān)系求單位“1”的總量、“1份”的數(shù)量或“1倍”的數(shù)量?
1.求“1倍”的數(shù)量,或求“1份”的數(shù)量
(1)數(shù)量÷對應(yīng)的倍數(shù)=“1倍”的數(shù)量;共同數(shù)量÷對應(yīng)的共同倍數(shù)=“1倍”的數(shù)量。例如,一個數(shù)的5倍是300,這個數(shù)是多少?分析:5倍與300是對應(yīng)關(guān)系,“5倍”是對應(yīng)的“倍數(shù)”,“300”是“數(shù)量”,“這個數(shù)是多少”就是求“1倍”的數(shù)量,則利用數(shù)量÷對應(yīng)的倍數(shù)=“1倍”的數(shù)量。列式:300÷5= 60;答:這個數(shù)是60。
練習(xí)1:甲數(shù)的小數(shù)點向右移動一位得20.9,問甲數(shù)是多少?
練習(xí)2:甲數(shù)的小數(shù)點向右移動一位得乙數(shù),則甲乙兩數(shù)之和是20.9,問甲乙兩數(shù)各是多少?
(2)多的數(shù)量÷對應(yīng)多的倍數(shù)=“1倍”的數(shù)量。例如,甲數(shù)比乙數(shù)多5倍,甲數(shù)比乙數(shù)多300,乙數(shù)是多少?甲數(shù)是多少?分析:“多5倍”與“多300”是對應(yīng)關(guān)系,則利用“多的數(shù)量÷對應(yīng)的多的倍數(shù)=“1倍”的數(shù)量,即可求出乙數(shù),然后再求甲數(shù)。
練習(xí)1:甲數(shù)的小數(shù)點向右移動一位得乙數(shù),則乙數(shù)比甲數(shù)多18,甲數(shù)是多少?
練習(xí)2:甲數(shù)乙數(shù)之比是5∶2,甲數(shù)比乙數(shù)是多30,問乙數(shù)是多少?
(3)少的數(shù)量÷對應(yīng)少的倍數(shù)=“1倍”的數(shù)量。例如,甲數(shù)比乙數(shù)少5倍,甲數(shù)比乙數(shù)少300,這兩個數(shù)分別是多少?分析:“少5倍”與“少300”是對應(yīng)關(guān)系,則利用“少的數(shù)量÷對應(yīng)的少的倍數(shù)=“1倍”的數(shù)量,即求出甲數(shù),然后再求乙數(shù)。甲數(shù):300÷5= 60;乙數(shù):60+300=360或60×(1+5)=360。
練習(xí)1:甲數(shù)的小數(shù)點向左移動一位得乙數(shù),則甲數(shù)比乙數(shù)少27,甲乙兩數(shù)各是多少?
練習(xí)2:甲數(shù)乙數(shù)之比是5∶2,乙數(shù)比甲數(shù)少30,問乙數(shù)是多少?
2.求單位“1”的數(shù)量

練習(xí)2:甲數(shù)比乙數(shù)多30%,甲數(shù)比乙數(shù)多30,甲乙兩數(shù)各是多少?
(3)少的數(shù)量÷對應(yīng)少的分?jǐn)?shù)(或少的百分?jǐn)?shù))=單位“1”的數(shù)量。例如,甲數(shù)比乙數(shù)少50%,甲數(shù)比乙數(shù)少300,乙數(shù)是多少?甲數(shù)是多少?分析:“少 50%”與“少300”是對應(yīng)關(guān)系,則利用少的數(shù)量÷對應(yīng)少的百分?jǐn)?shù)=單位“1”的數(shù)量,即求出乙數(shù),然后再求甲數(shù)。乙:300÷50%=600;甲:600-300=300。

畫圖(線段)可輔助解題。范圍:數(shù)軸、平面圖形、立體圖形、路程問題、工程問題等都可畫圖以助理解。用畫圖法時要注意:畫線段圖時,一般都先畫單位1的數(shù)量(或量),再畫其他數(shù)量,這樣才能更好地表示相互關(guān)系。如綜合訓(xùn)練2,先用線段表示乙數(shù)(其中分成3段),再左對齊畫同樣的5段表示甲數(shù),同時比乙數(shù)長的部分標(biāo)上20,最后乙數(shù)的三段標(biāo)上“?”。
當(dāng)然,圖畫好后,依然要用數(shù)量關(guān)系法或?qū)?yīng)關(guān)系法來進(jìn)行思考分析相互關(guān)系,所以畫圖法只是輔助方法,但能讓思考分析變得更直觀明了。

這樣就對綜合訓(xùn)練2進(jìn)行了一題多種思路分析解答。教師在教學(xué)中要循序漸進(jìn),同時注意綜合歸納,就能為孩子終身數(shù)學(xué)學(xué)習(xí)打下堅實基礎(chǔ)。