






摘要:考慮Potts模型的幾種可逆與不可逆Metropolis-Hastings算法的相關性質, 利用變分公式,得到了它們在擊中時與漸近方差等方面的比較定理。
關鍵詞:Potts模型;變分公式;擊中時;漸近方差
中圖分類號:O211.63 文獻標志碼:A 文章編號:1001-2443(2025)01-0006-07
參考文獻:
[1] ASHKIN J, TELLER E. Statistics of two-dimensional lattices with four components[J]. Physical Review, 1943, 64: 178–184.
[2] DOMB C. Configurational studies of the Potts models[J]. Journal of Physics A: Mathematical, Nuclear and General, 1974, 7: 1335–1348.
[3] FORGACS G, CHUI S.T, FRISCH H.L. Critical dynamics of the Potts model[J]. Physical Review B, 1980, 22: 415–417.
[4] KIM S, SEO I. Approximation method to metastability: an application to non-reversible, two-dimensional Ising and Potts models without external fields[J]. arXiv preprint arXiv:2212.13746, 2022.
[5] CHEN M F." "From Markov Chains to Non-equilibrium particle systems[M]. Singapore: World Scientific,2004: 173-210.
[6] WANG F Y, Functional Inequalities, Markov semigroups and spectral Theory[M]. Beijing:Science Press,2005: 7-45.
[7] HUANG L J, MAO Y H. Variational principles of hitting times for non-reversible Markov chains[J]. J Math Anal Appl,2018, 468 :959–975.
[8] HUANG L J, MAO Y H. Variational formulas for asymptotic variance of general discrete-time Markov chains[J]. Bernoulli, 2023, 29: 300-322.
[9] CUI H, MAO Y H. Eigentime identity for asymmetric finite Markov chains[J]. Frontiers of Mathematics in China,2010(5): 623.
[10] CHOI M C H," GEOFFRE W. Systematic approaches to generate reversiblizations of non-reversible Markov chains[J]. arXiv preprint arXiv:2303.03650, 2023.
[11] HUANG L J, MAO Y H. On some mixing times for nonreversible finite Markov chains[J]. Journal of Applied Probability, 2017, 54: 627-637.
[12] TIERNEY L. A note on Metropolis-Hastings kernels for general state spaces[J]. Annals of applied probability,1998: 1-9.
[13] CHEN T L, HWANG C R. Accelerating reversible Markov chains[J]. Statist amp; Probab Lett, 2013, 83: 1956–1962.
[14] ROBERTS G O," ROSENTHAL J S. Variance bounding Markov chains[J]. Ann Appl Probab,2018, 18: 1201–1214.
[15]" HWANG C R, HWANG S Y, SHEU S J. Accelerating diffusions [J]. Annals of Applied Probability, 2005, 15: 1433-1444.
Properties of Several Metropolis-Hastings Algorithms of Potts Models
YUAN Ke-ying
(College of Mathematics and Statistics, Fujian Normal University, Fuzhou 350007, China)
Abstract:The paper studies the relevant properties of several reversible and non-reversible Metropolis-Hastings alqorithms of Potts models and by use of variational formulas,their comparison theorems on hiting time and asymptotic variance are obtained.
Key words:Potts model; variational formula; hitting time; asymptotic variance
(責任編輯:馬乃玉)