999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

巨噬細胞在艱難梭菌感染中的研究進展

2025-03-21 00:00:00陳時堯吳韜
中國抗生素雜志 2025年2期
關(guān)鍵詞:炎癥反應(yīng)

摘要:艱難梭菌是一種革蘭陽性芽胞厭氧桿菌,該菌是醫(yī)院獲得性感染的主要病原體之一,艱難梭菌感染的癥狀從輕度腹瀉至嚴重的偽膜性結(jié)腸炎。巨噬細胞作為一種先天性免疫細胞廣泛分布于全身組織,在細菌感染中發(fā)揮重要作用。巨噬細胞通過識別、吞噬抗原,產(chǎn)生細胞因子以激活和募集其他免疫細胞至感染部位。在艱難梭菌感染過程中,巨噬細胞可通過Toll樣受體、Nod樣受體識別艱難梭菌,并產(chǎn)生免疫反應(yīng)。最近有研究證明,艱難梭菌可抑制巨噬細胞的吞噬清除能力,導(dǎo)致巨噬細胞大量聚集,加重腸道的炎癥反應(yīng);而通過改善巨噬細胞溶酶體質(zhì)子泵的功能,則可恢復(fù)其吞噬能力。本文總結(jié)了巨噬細胞對艱難梭菌的免疫通路,從巨噬細胞免疫功能的角度,提供治療艱難梭菌感染的新方法。

關(guān)鍵詞:艱難梭菌;巨噬細胞;免疫;感染機制;炎癥反應(yīng)

中圖分類號:R978.1 文獻標志碼:A

Research progress of macrophages in Clostridium difficile infection

Chen Shiyao1 and Wu Tao2

(1 College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310000; 2 Department of Medical Engineering, the First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003)

Abstract Clostridioides difficile is a Gram-positive, spore-forming, anaerobic Bacillus as a major pathogen of hospital-acquired infections. The symptoms of C. difficile infection (CDI) range from mild diarrhea to severe pseudomembranous colitis. Macrophages are innate immune cells that are widely distributed throughout the body's tissues and play an important role in bacterial infections. Macrophages recognize and phagocytose antigens and produce cytokines to activate and recruit other immune cells to the site of infection. During the process of C. difficile infection, macrophages can recognize C. difficile through Toll-like receptors and Nod-like receptors and produce immune responses. Recent studies have demonstrated that C. difficile can inhibit the phagocytic clearance ability of macrophages, leading to massive macrophage accumulation and exacerbating the inflammatory response in the gut. The phagocytic capacity of macrophages can be restored by improving their lysosomal proton pump function. This paper summarized the immune pathway of macrophages against C. difficile and provided a new approach to treat C. difficile infection from the perspective of macrophage immune function.

Key words Clostridioides difficile; "Macrophage; Immune; Mechanisms of infection; Inflammatory response

艱難梭菌感染(Clostridioides difficile infection, CDI)是一種院內(nèi)獲得性感染疾病。目前,國內(nèi)臨床所用的艱難梭菌感染治療藥物主要包括甲硝唑和萬古霉素。甲硝唑適用于輕度至中度艱難梭菌感染,但是有部分艱難梭菌對甲硝唑表現(xiàn)出異質(zhì)耐藥性,導(dǎo)致治療效果不佳[1]。萬古霉素適用于中度至重度艱難梭菌感染,但也會出現(xiàn)CDI復(fù)發(fā)的現(xiàn)象[2]。隨著對生物制劑研究的迅速發(fā)展,開展相關(guān)生物制劑在艱難梭菌感染中的使用,以期降低艱難梭菌感染及復(fù)發(fā)的風險[3]。

巨噬細胞是細菌感染的主要免疫細胞,能識別并吞噬艱難梭菌,同時通過產(chǎn)生細胞因子和趨化因子,募集中性粒細胞等其他免疫細胞至感染部位清除艱難梭菌。利用巨噬細胞的免疫作用清除艱難梭菌是未來治療CDI的良好手段。因此本文綜述了巨噬細胞識別艱難梭菌的方式和免疫應(yīng)答的研究進展,為未來治療CDI提供新思路。

1 艱難梭菌

艱難梭菌是革蘭陽性芽胞厭氧菌,可引起感染性腹瀉和偽膜性結(jié)腸炎[4]。從20世紀末至今,艱難梭菌感染的發(fā)生率顯著增加,現(xiàn)已成為最重要的院內(nèi)獲得性感染病原菌之一[5]。艱難梭菌有多種致病因子,主要毒性因子是腸毒素A(TcdA)和細胞毒素B(TcdB),二者的基因位于致病決定區(qū)基因座(PaLoc)上。TcdA和TcdB 結(jié)合宿主細胞受體,被內(nèi)吞后通過葡萄糖基化使宿主細胞Rho家族GTP酶失活[6]。Rho GTP酶的失活會破壞宿主細胞骨架并加速上皮屏障功能的破壞[7]。除此之外,高毒力菌株還會產(chǎn)生二元毒素(binary toxins,CDT)CDT,屬于二元ADP—核糖基化毒素家族,由CDTa和CDTb兩種毒素成分組成。CDTb被絲氨酸蛋白酶激活,與脂蛋白受體結(jié)合并將CDTa轉(zhuǎn)位到宿主細胞質(zhì)中。CDTa作為酶促ADP-核糖基轉(zhuǎn)移酶,催化肌動蛋白發(fā)生ADP糖基化修飾,被核糖基化后的肌動蛋白與其他肌動蛋白絲的末端結(jié)合,從而抑制肌動蛋白聚合,導(dǎo)致肌動蛋白細胞骨架解聚,增加艱難梭菌感染的嚴重程度[8]。除了上述毒素因子外,艱難梭菌芽胞也可以誘發(fā)毒性反應(yīng)。芽胞被巨噬細胞吞噬內(nèi)化后存活,刺激巨噬細胞產(chǎn)生IL-1β、TNF-α、IL-6和IL-12等細胞因子,引起炎癥反應(yīng)[9]。此外,細菌外蛋白(S-layer proteins,SLPs)也是其毒力因子,不僅在生長和存活中發(fā)揮作用,還可促進黏附和生物膜的形成[10]。

2 巨噬細胞

巨噬細胞是先天免疫的重要組成部分,具有雙重作用,一方面可以通過吞噬作用清除病原體,同時介導(dǎo)防御和炎癥反應(yīng),巨噬細胞通過胞吞作用將病原體包圍并內(nèi)化,隨后吞噬體與酸性溶酶體融合,降解病原體[11]。另一方面,巨噬細胞被某些信號激活極化成不同的表型(主要為M1和M2),進而進行介導(dǎo)防御和產(chǎn)生炎癥反應(yīng),通過作用于多種信號轉(zhuǎn)導(dǎo)通路發(fā)揮調(diào)節(jié)作用[12]。M1型巨噬細胞被稱為促炎性巨噬細胞,分泌促炎因子;M2型巨噬細胞被稱為抗炎性巨噬細胞,分泌抗炎因子[13]。在細菌感染中,巨噬細胞監(jiān)測到入侵的細菌,表達特異性受體結(jié)合病原體,處理抗原并在其表面呈現(xiàn)與人類白細胞抗原(human leucocyte antigen,HLA)分子結(jié)合的肽片段,提示免疫系統(tǒng)病原體的存在。識別入侵的細菌后,吞噬受體與細菌的相應(yīng)配體結(jié)合,例如清道夫受體可結(jié)合細菌的表面分子,模式識別受體(pattern recognition receptor,PRR)可特異性結(jié)合病原體相關(guān)分子模式(pathogen-associated molecular patterns,PAMP)[14],觸發(fā)細胞內(nèi)信號通路,誘導(dǎo)肌動蛋白聚合和吞噬杯(phagocytic cups)的形成。吞噬杯閉合后形成吞噬體,巨噬細胞通過吞噬體內(nèi)吞作用清除細菌,誘導(dǎo)已被感染的細胞凋亡,減少病灶面積[15]。抗原刺激和細胞因子(如IFN-γ、TNF-α)誘導(dǎo)M1表型極化,這是宿主對細菌感染的關(guān)鍵免疫反應(yīng)[13]。M1型巨噬細胞對細菌感染的細胞具有強大的細胞毒性,產(chǎn)生促炎因子和趨化因子,還通過產(chǎn)生活性氧和活性氮反應(yīng)物發(fā)揮細胞毒性[16]。趨化因子募集其他免疫細胞至感染部位,加快清除細菌的速度[17]。M2型巨噬細胞則分泌IL-10和TGF-β抑制炎癥,促進組織修復(fù)重塑、血管生成和保持體內(nèi)免疫強度平衡[13]。兩種極化巨噬細胞在細菌感染時均發(fā)揮重要作用,缺一不可。

3 巨噬細胞在CDI過程中的免疫應(yīng)答

在CDI中,巨噬細胞是第一個識別、吞噬艱難梭菌,并產(chǎn)生細胞因子的免疫細胞[18]。巨噬細胞通過膜表面產(chǎn)生A型清道夫受體識別艱難梭菌的脂磷壁酸[19],進而通過Fcγ受體促進酪氨酸激酶募集,酪氨酸激酶激活Rho家族成員的Rac和Cdc42,Cdc42與Wiskott-Aldrich 綜合征蛋白(Wiskott-Aldrich syndrome protein,WASP)相互作用,而WASP則作用于肌動蛋白相關(guān)蛋白Arp2/3復(fù)合物。Arp2/3復(fù)合物使肌動蛋白聚合成f-肌動蛋白,從而推動巨噬細胞板狀偽足的形成和靶顆粒的內(nèi)化,將艱難梭菌包裹并吞噬,形成吞噬體[20]。巨噬細胞向吞噬泡內(nèi)釋放活性氧(reactive oxygen species,ROS)[19]、水解酶殺死艱難梭菌[15]。巨噬細胞還可通過NF-κB信號通路、炎癥小體信號轉(zhuǎn)導(dǎo)等方式產(chǎn)生IL-1β、IL-10、IL-12、TNF-α、TGF-β和IL-8等促炎因子和CXC及CC趨化因子,從而激活并募集中性粒細胞、T細胞向感染部位趨化[21-22]。而IL-1、TNF-α等促炎因子的產(chǎn)生是Ⅰ型免疫反應(yīng)的特征,IL-4、IL-5、IL-25等抗炎因子的產(chǎn)生是Ⅱ型免疫反應(yīng)的特征[23]。IL-1β是強大的促炎因子,其受體IL-1R作用于下游誘導(dǎo)IL-23的釋放,加劇腸道炎癥,增加CDI嚴重程度[24]。IL-8主要由巨噬細胞和單核細胞產(chǎn)生,IL-8在CDI過程中促進中性粒細胞向炎癥區(qū)域的遷徙,增強中性粒細胞的殺菌作用。然而,中性粒細胞的浸潤會增加腸道通透性[25],使炎癥更易滲透腸道黏膜[26],中性粒細胞的浸潤還會破壞腸黏膜的完整性[27]。因此,在艱難梭菌感染中,過強的I型反應(yīng)會加重組織損傷。在CDI中,IL-25作為重要的Ⅱ型細胞因子,通過作用于嗜酸性粒細胞而減少胃腸道上皮細胞黏蛋白的產(chǎn)生和組織損傷,增強腸道上皮屏障的完整性,發(fā)揮保護作用[28]。細胞因子可作為評估CDI嚴重程度的生物標志物,促炎因子如IL-8、IL-1β產(chǎn)生過多,募集更多的中性粒細胞,進而誘發(fā)高水平的組織損傷。有研究表明,在臨床實驗中,患者糞便IL-8的濃度與CDI復(fù)發(fā)具有一定相關(guān)性[29]。但缺乏促炎因子會導(dǎo)致免疫強度低,無法有效清除艱難梭菌[24]。因此,平衡I型和Ⅱ型免疫反應(yīng)對治療CDI至關(guān)重要。

4 巨噬細胞對艱難梭菌的免疫通路(圖1)

4.1 Toll樣受體介導(dǎo)的免疫通路

巨噬細胞極化涉及多種途徑,Toll樣受體(TLR)家族是已知配體、下游信號通路和功能的重要先天免疫受體組。Toll樣受體可將病原體識別和先天免疫、適應(yīng)性免疫緊密聯(lián)系[30]。

4.1.1 TLR9在CDI中作用

TLR9是巨噬細胞的細胞內(nèi)受體,參與識別細菌、病毒和寄生蟲來源的未甲基化CpG-DNA[31]。 TcdA包含葡萄糖基轉(zhuǎn)移酶結(jié)構(gòu)域(glucosyltransferase domain,GTD)、自催化半胱氨酸蛋白酶結(jié)構(gòu)域(cysteine protease domain,CPD)、中央跨膜結(jié)構(gòu)域(transmembrane domain,TMD)和由重復(fù)寡肽組成的C端受體結(jié)合結(jié)構(gòu)域(receptor-binding domain,RBD)[32]。TcdA含有多個細胞穿透肽基序,能夠介導(dǎo)膜易位而促進巨噬細胞內(nèi)吞作用。TcdA通過靜電作用與細菌DNA共化,形成能夠抵御DNA酶水解的蛋白質(zhì)—DNA復(fù)合物。TcdA57-80-DNA復(fù)合物在DNA間距上呈現(xiàn)平行DNA形態(tài),形成柱狀六邊形DNA晶格,使DNA與TLR9形成互鎖的狀態(tài),增加TLR9與蛋白質(zhì)-DNA復(fù)合物的靜電作用,從而放大免疫反應(yīng)的強度[33]。巨噬細胞的TLR9識別TcdA57-80-DNA復(fù)合物,發(fā)生促炎反應(yīng),產(chǎn)生大量IL-8。因此,注射或口服ODN TTAGGG(TLR9抑制劑)均可以減輕炎癥反應(yīng),降低腸道組織損傷[34],這為緩解艱難梭菌引起的腸道炎癥提供了幫助。

4.1.2 TLR7受體在CDI中作用

艱難梭菌可以激活巨噬細胞TLR7介導(dǎo)的免疫途徑。艱難梭菌使TLR7表達量升高,從而產(chǎn)生高水平的IFN-γ和TNF-α,反之,IFN-γ和TNF-α的協(xié)同作用能更大程度上作用并激活巨噬細胞,誘導(dǎo)PANoptosis凋亡的炎癥性細胞死亡[35]。PANoptosis凋亡通過細胞死亡引發(fā)炎癥,導(dǎo)致釋放更多的細胞因子和趨化因子,同時能激活中性粒細胞和巨噬細胞,釋放有毒的活性氧,加劇全身炎癥[36]。另外,TLR7可抑制巨噬細胞的吞噬能力,導(dǎo)致巨噬細胞清除艱難梭菌能力下降[35]。有研究表明,TLR7/8激動劑可引起巨噬細胞清道夫受體下調(diào),改變巨噬細胞泛素化機制,導(dǎo)致大腸埃希菌的清除能力下降[37]。因此,TLR7抑制巨噬細胞可能是由于巨噬細胞的清道夫受體下調(diào)或巨噬細胞用來殺傷細菌的泛素化機制改變。綜上,TLR7相關(guān)通路接受來自艱難梭菌的信號,產(chǎn)生能引起強烈炎癥反應(yīng)的IFN-γ和TNF-α,增強腸道炎癥表達。抑制TLR7表達,可以降低腸道組織損傷[36],這為靶點治療CDI提供一條新途徑。

4.1.3 TLR4受體在CDI中作用

艱難梭菌表面蛋白,覆蓋在細菌的整個外層,是病原體和宿主免疫細胞識別的關(guān)鍵位點[38]。MAPK級聯(lián)反應(yīng)在將細胞外信號轉(zhuǎn)導(dǎo)為細胞反應(yīng)的過程中起關(guān)鍵作用[39]。MAPK家族有3個明確的成員:經(jīng)典MAPK家族(也稱為ERK),C-Jun N末端激酶/應(yīng)激活化蛋白激酶(JNK/SAPK)和p38激酶[40]。p38 MAPK在細胞凋亡、分化、存活、炎癥和其他應(yīng)激反應(yīng)中起主要調(diào)控作用[41]。巨噬細胞表面的TLR4被艱難梭菌SLPs激活后,其下游通路的MAPK激酶p38磷酸化,P38的磷酸化將會激活細胞炎癥因子表達,產(chǎn)生高水平的細胞因子IL-12p40、TNF-α、IL-1β、IL-6和趨化因子MCP、MIP-1α和MIP-2,并將免疫細胞募集到感染部位[42]。IL-12p40驅(qū)動未成熟的CD4 T細胞分化為TH1細胞,TH1細胞可以作用于巨噬細胞,正反饋增強巨噬細胞吞噬能力;同時,TH1細胞誘導(dǎo)B細胞產(chǎn)生IgG蛋白,觸發(fā)肥大細胞的免疫應(yīng)答清除艱難梭菌[43]。P38磷酸化還會導(dǎo)致MHCⅡ的大量產(chǎn)生[42],MHCⅡ存在于巨噬細胞和樹突狀細胞表面,能將抗原特異性呈遞給CD4 T細胞[44],而CD4 T細胞可幫助B細胞產(chǎn)生抗體,分泌抗菌物質(zhì),發(fā)揮免疫功能[45]。P38的激活還導(dǎo)致巨噬細胞上的CD40和CD80表達增加[42],CD40和CD80作為重要的巨噬細胞共刺激分子,參與激活巨噬細胞,調(diào)節(jié)IL-12和輔助性 T 細胞I型細胞因子,發(fā)揮細菌清除功能[46]。TLR4也可以識別毒素CDT,產(chǎn)生IL-8和CXCL2[47]。CXCL2誘導(dǎo)MIP-1α的產(chǎn)生,從而刺激TNF-α和LTB4的釋放,產(chǎn)生炎癥反應(yīng)[48]。可見,巨噬細胞的TLR4在艱難梭菌感染的免疫通路中發(fā)揮重要作用,缺乏TLR4將無法產(chǎn)生足夠的免疫反應(yīng)清除感染[42]。

4.2 炎癥小體在CDI中作用

IL-1β是炎癥反應(yīng)的關(guān)鍵介質(zhì),可以誘導(dǎo)免疫細胞產(chǎn)生多種促炎因子和趨化因子[49]。IL-1β的表達需要炎癥小體,而炎癥小體復(fù)合物包括Nod樣受體蛋白如NRLP3、NRLP1和NRLP7等。NRLP3炎癥小體包括NRLP3傳感器,銜接蛋白凋亡相關(guān)斑點樣(apoptosis-associated speck-like protein containing a CARD,ASC)蛋白和pro casepase-1[50]。NRLP3發(fā)揮作用分為啟動和激活兩部分。啟動需要病原體模式受體或損傷相關(guān)分子模式(damage-associated molecular patterns,DAMP)刺激模式識別受體,然后細胞轉(zhuǎn)錄上調(diào)NRLP3、pro-IL-1β、casepase-1。激活由多個上游信號誘導(dǎo),如K+和Cl-外排、溶酶體的破壞。炎癥小體激活時將pro-IL-1β剪切為IL-1β并分泌IL-1β,誘導(dǎo)細胞凋亡[51]。巨噬細胞將艱難梭菌吞噬后,觸發(fā)炎癥小體NRLP3的激活。P2X7為K+外排,ATP內(nèi)流的門控通道,艱難梭菌作用于P2X7,這一過程是炎癥小體激活的重要信號。MyD88是Toll樣受體和白細胞介素-1(IL-1)受體家族下游炎癥信號通路的典型銜接子,介導(dǎo)炎癥小體的產(chǎn)生[52]。MyD88將炎癥信號傳遞至通路下游,產(chǎn)生pro-IL-1β。Casepase-1參與NRLP3炎癥小體的成熟,成熟的NRLP3炎癥小體將pro-IL-1β加工為IL-1β[53]。IL-1β作為重要的炎癥因子,參與多種免疫途徑清除艱難梭菌,例如誘導(dǎo)MCP-1的產(chǎn)生,MCP-1募集巨噬細胞遷移至感染部位[49];激活炎性casepase-1,誘導(dǎo)被感染的細胞凋亡[54]。在艱難梭菌激活NRLP3炎癥小體的過程中,P2X7通道對NRLP3炎癥小體的激活至關(guān)重要,抑制P2X7通道的功能不能激活NRLP3炎癥小體以應(yīng)對艱難梭菌感染[53]。然而,這并不意味著炎癥小體的免疫反應(yīng)越強越有利于治療CDI,炎癥小體的形成會導(dǎo)致血小板和中性粒細胞聚集,形成血栓[55],產(chǎn)生過高的炎癥因子還會使免疫系統(tǒng)過度攻擊腸道組織,甚至造成中毒性休克綜合征[56]。

4.3 NF-κB通路在CDI中作用

核因子-κB(nuclear factor κB,NF-κB)是一個誘導(dǎo)型轉(zhuǎn)錄因子家族,廣泛存在于巨噬細胞中,參與調(diào)節(jié)先天免疫,誘導(dǎo)促炎細胞因子和趨化因子的表達。該家族由5個成員組成,包括NF-κB1(也稱為 p50)、NF-κB2(也稱為 p52)、RelA(也稱為p65)、RelB 和c-Rel[57]。無病原體刺激時,NF-κB與抑制性IκB蛋白(IκBα、IκBβ、p100、p105等)結(jié)合;當NF-κB信號通路被病原體激活時,IκB激酶(IKK)復(fù)合物磷酸化IκB,降解IκB蛋白,NF-κB二聚體便可進入細胞核以調(diào)節(jié)靶基因的表達,導(dǎo)致IL-1β、TNF-α等促炎因子的大量產(chǎn)生[58]。TcdA通過受體介導(dǎo)的內(nèi)吞作用進入細胞[59],TcdA磷酸化p65/p50異二聚體的抑制性蛋白IκBα,從而使IκBα降解而脫落,p65/p50異二聚體便進入細胞核調(diào)控產(chǎn)生大量的TNF-α,導(dǎo)致細胞凋亡[60-61]。巨噬細胞也可以通過TLR2/6異聚體識別CDT以激活NF-κB免疫通路[62]。這些研究表明在CDI中,NF-κB能介導(dǎo)細胞凋亡,產(chǎn)生炎癥反應(yīng)。

5 如何通過巨噬細胞治療CDI

巨噬細胞作為重要的免疫細胞,具有治療CDI的潛力[63]。黑素細胞誘導(dǎo)轉(zhuǎn)錄因子(microphthalmia-associated transcription factor,MITF)是調(diào)節(jié)巨噬細胞自噬和溶酶體的關(guān)鍵轉(zhuǎn)錄因子[56],而研究表明,TcdB可作用于CTNNB1/β-catenin-MITF 抑制溶酶體質(zhì)子泵亞基,下調(diào)MITF和編碼溶酶體膜上ATP酶的基因的表達,從而抑制巨噬細胞內(nèi)溶酶體酸化,導(dǎo)致巨噬細胞吞噬艱難梭菌能力下降。而維生素D3和卡馬西平可恢復(fù)MITF的表達,改善溶酶體質(zhì)子泵的功能,從而恢復(fù)巨噬細胞吞噬清除艱難梭菌的能力[18]。巨噬細胞和中性粒細胞的過度聚集會導(dǎo)致強烈的炎癥反應(yīng),損傷腸道組織[64]。有研究表明,在副干酪乳桿菌中克隆并表達人類NAPE-PLD基因 (p-NAPE-LP),將其移入小鼠腸道內(nèi)可產(chǎn)生棕櫚酰乙醇酰胺(PEA)以下調(diào)誘導(dǎo)型一氧化氮合酶(Inducible nitric oxide synthase,iNOS),環(huán)氧化酶-2(COX-2)的表達,達到降低結(jié)腸中巨噬細胞和中性粒細胞的密度,減輕組織學(xué)損傷的目的[63]。這些利用巨噬細胞免疫作用的新型治療手段不涉及抗菌藥物的使用,可降低CDI的復(fù)發(fā)率。

6 未來研究方向

雖然目前對巨噬細胞在艱難梭菌感染中的作用機制已有所了解,但是,使用巨噬細胞治療CDI的方法尚不成熟。一方面,不同來源(如鼠、人)的巨噬細胞對艱難梭菌的免疫通路并不完全相同,現(xiàn)有的實驗多以鼠來源的巨噬細胞為主,而對人巨噬細胞的免疫知之甚少。另一方面,基于巨噬細胞的新型治療手段適用條件苛刻,并未推廣到更為復(fù)雜、菌群繁多的人類腸道。綜上所述,后續(xù)的研究應(yīng)以人巨噬細胞為主體,進一步明晰巨噬細胞與艱難梭菌作用的機制,完善巨噬細胞作為治療CDI的技術(shù)手段,拓展臨床應(yīng)用,增加臨床有效治療,降低艱難梭菌感染復(fù)發(fā)危險。

參 考 文 獻

Banawas S S. Clostridium difficile infections: A global overview of drug sensitivity and resistance mechanisms[J]. Biomed Res Int, 2018, 2018: 1-9.

Czepiel J, Dró?d? M, Pituch H, et al. Clostridium difficile infection: Review[J]. Eur J Clin Microbiol Infect Dis, 2019, 38(7): 1211-1221.

Minkoff N Z, Aslam S, Medina M, et al. Fecal microbiota transplantation for the treatment of recurrent Clostridioides difficile (Clostridium difficile)[J]. Cochrane Database Syst Rev, 2023, 4(4): Cd013871.

Smits W K, Lyras D, Lacy D B, et al. Clostridium difficile infection[J]. Nat Rev Dis Primers, 2016, 2: 16020.

曲芬, 湯一葦. 艱難梭菌感染的流行狀況及診治進展[J]. 傳染病信息, 2010, 23(1): 8-10.

郭銀莉, 洪守強, 陳渺渺, 等. 艱難梭菌感染的臨床治療策略及新藥物研究進展[J]. 中國抗生素雜志, 2023, 48(10): 1105-1117.

Kordus S L, Thomas A K, Lacy D B. Clostridioides difficile toxins: Mechanisms of action and antitoxin therapeutics[J]. Nat Rev Microbiol, 2022, 20(5): 285-298.

Gerding D N, Johnson S, Rupnik M, et al. Clostridium difficile binary toxin CDT: Mechanism, epidemiology, and potential clinical importance[J]. Gut Microbes, 2014, 5(1): 15-27.

Chiu P J, Rathod J, Hong Y P, et al. Clostridioides difficile spores stimulate inflammatory cytokine responses and induce cytotoxicity in macrophages[J]. Anaerobe, 2021, 70: 102381.

Mori N, Takahashi T. Characteristics and immunological roles of surface layer proteins in Clostridium difficile[J]. Ann Lab Med, 2018, 38(3): 189-195.

VanHook A M. Macrophages don't take more than they can eat[J]. Sci Signal, 2017, 10(484): eaao1183.

Wang C, Ma C, Gong L, et al. Macrophage polarization and its role in liver disease[J]. Front Immunol, 2021, 12: 803037.

Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440.

Hirayama D, Iida T, Nakase H. The phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis[J]. IntJ Mol Sci, 2017, 19(1): 92-105.

Weiss G, Schaible U E. Macrophage defense mechanisms against intracellular bacteria[J]. Immunol Rev, 2015, 264(1): 182-203.

Funes S C, Rios M, Escobar-Vera J, et al. Implications of macrophage polarization in autoimmunity[J]. Immunology, 2018, 154(2): 186-195.

Chen K, Bao Z, Tang P, et al. Chemokines in homeostasis and diseases[J]. Cell Mol Immunol, 2018, 15(4): 324-334.

Chan H, Li Q, Wang X, et al. Vitamin D(3) and carbamazepine protect against Clostridioides difficile infection in mice by restoring macrophage lysosome acidification[J]. Autophagy, 2022, 18(9): 2050-2067.

Plüddemann A, Mukhopadhyay S, Gordon S. The interaction of macrophage receptors with bacterial ligands[J]. Expert Rev Mol Med, 2006, 8(28): 1-25.

Ernst J D. Bacterial inhibition of phagocytosis[J]. Cell Microbiol, 2000, 2(5): 379-386.

Saad G, Azrad M, Aias M, et al. The effect of different C. difficile MLST strains on viability and activity of macrophages[J]. Heliyon, 2023, 9(3): e13846.

McDermott A J, Higdon K E, Muraglia R, et al. The role of Gr-1(+) cells and tumour necrosis factor-α signalling during Clostridium difficile colitis in mice[J]. Immunology, 2015, 144(4): 704-716.

Borowczyk J, Shutova M, Brembilla N C, et al. IL-25 (IL-17E) in epithelial immunology and pathophysiology[J]. J Allergy Clin Immunol, 2021, 148(1): 40-52.

Donlan A, Petri Jr W A. The inflammasome and type-2 immunity in Clostridium difficile infection[J]. Clin Colon Rectal Surg, 2020, 33(2): 67-72.

Ishida Y, Maegawa T, Kondo T, et al. Essential involvement of IFN-gamma in Clostridium difficile toxin A-induced enteritis[J]. J Immunol, 2004, 172(5): 3018-3025.

Czepiel J, Biesiada G, Dró?d? M, et al. The presence of IL-8 +781 T/C polymorphism is associated with the parameters of severe Clostridium difficile infection[J]. Microb Pathog, 2018, 114: 281-285.

Sun X, Savidge T, Feng H. The enterotoxicity of Clostridium difficile toxins[J]. Toxins (Basel), 2010, 2(7): 1848-1880.

Buonomo E L, Cowardin C A, Wilson M G, et al. Microbiota-regulated IL-25 increases eosinophil number to provide protection during Clostridium difficile infection[J]. Cell Rep, 2016, 16(2): 432-443.

Hamo Z, Azrad M, Nitzan O, et al. Characterization of the "immune response during infection caused by Clostridioides "difficile[J]. Microorganisms, 2019, 7(10): 435.

Satoh T, Akira S. Toll-like receptor signaling and its inducible proteins[J]. Microbiol Spectr, 2016, 4(6). doi: 10.1128/microbiolspec.MCHD-0040-2016.

Fehri E, Ennaifer E, Bel Haj Rhouma R, et al. TLR9 and glioma: Friends or foes?[J]. Cells, 2022, 12(1): 152.

Jank T, Aktories K. Structure and mode of action of clostridial glucosylating toxins: The ABCD model[J]. Trends Microbiol, 2008, 16(5): 222-229.

Schmidt N W, Jin F, Lande R, et al. Liquid-crystalline ordering of antimicrobial peptide-DNA complexes controls TLR9 activation[J]. Nat Mater, 2015, 14(7): 696-700.

Chen X, Yang X, de Anda J, et al. Clostridioides difficile toxin A remodels membranes and mediates DNA entry into cells to activate toll-like receptor 9 signaling[J]. Gastroenterology, 2020, 159(6): 2181-2192.e2181.

Yu R, Yang Z, Liu J, et al. Absence of toll-like receptor 7 ameliorates survival and reduces intestinal injury in mice after Clostridium difficile infection[J]. Microbes Infect, 2023, 25(8): 105210.

Urrutia P J, Mena N P, Nú?ez M T. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative "disorders[J]. Front Pharmacol, 2014, 5: 38.

Talreja J, Samavati L. K63-linked polyubiquitination on TRAF6 regulates LPS-mediated MAPK activation, cytokine production, and bacterial clearance in toll-like receptor 7/8 primed murine macrophages[J]. Front Immunol, 2018, 9: 279.

Eidhin N D, Ryan A W, Doyle R M, et al. Sequence and phylogenetic analysis of the gene for surface layer protein, slpA, from 14 PCR ribotypes of Clostridium difficile[J]. J Med Microbiol, 2006, 55(Pt 1): 69-83.

Zhang W, Liu H T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells[J]. Cell Res, 2002, 12(1): 9-18.

Kim E K, Choi E J. Pathological roles of MAPK signaling pathways in human diseases[J]. Biochim Biophys Acta, 2010, 1802(4): 396-405.

Zhou Y, Takano T, Li X, et al. β-elemene regulates M1-M2 macrophage balance through the ERK/JNK/P38 MAPK signaling pathway[J]. Commun Biol, 2022, 5(1): 519.

Collins L E, Lynch M, Marszalowska I, et al. Surface layer proteins isolated from Clostridium difficile induce clearance responses in macrophages[J]. Microbes Infect, 2014, 16(5): 391-400.

Suresh P, Arp L H. Effect of passively administered immunoglobulin G on the colonization and clearance of Bordetella avium in turkeys[J]. Vet Immunol Immunopathol, 1995, 49(3): 229-239.

Roche P A, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation[J]. Nat Rev Immunol, 2015, 15(4): 203-216.

Zhu J, Paul W E. CD4 T cells: fates, functions, and faults[J]. Blood, 2008, 112(5): 1557-1569.

Nolan A, Weiden M, Kelly A, et al. CD40 and CD80/86 act synergistically to regulate inflammation and mortality in polymicrobial sepsis[J]. Am J Respir Crit Care Med, 2008, 177(3): 301-308.

McKee H K, Kajiwara C, Yamaguchi T, et al. Clostridioides difficile toxins enhanced the in vitro production of CXC chemokine ligand 2 and tumor necrosis factor-α via Toll-like receptors in macrophages[J]. J Med Microbiol, 2021, 70(4): 001342.

Ramos C D, Fernandes K S, Canetti C, et al. Neutrophil recruitment in immunized mice depends on MIP-2 inducing the sequential release of MIP-1alpha, TNF-alpha and LTB(4)[J]. Eur J Immunol, 2006, 36(8): 2025-2034.

Weber A, Wasiliew P, Kracht M. Interleukin-1 (IL-1) pathway[J]. Sci Signal, 2010, 3(105): cm1.

Wang Y, Che M, Xin J, et al. The role of IL-1β and TNF-α in intervertebral disc degeneration[J]. Biomed Pharmacother, 2020, 131: 110660.

Swanson K V, Deng M, Ting J P. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics[J]. Nat Rev Immunol, 2019, 19(8): 477-489.

Deguine J, Barton G M. MyD88: A central player in innate immune signaling[J]. F1000Prime Rep, 2014, 6: 97.

Liu Y H, Chang Y C, Chen L K, et al. The ATP-P2X(7) Signaling axis is an essential sentinel for intracellular Clostridium difficile pathogen-induced inflammasome activation[J]. Front Cell Infect Microbiol, 2018, 8: 84.

Sollberger G. Approaching neutrophil pyroptosis[J]. J Mol Biol, 2022, 434(4): 167335.

Mattana M, Tomasello R, Cammarata C, et al. Clostridium difficile induced inflammasome activation and coagulation derangements[J]. Microorganisms, 2022, 10(8): 1624.

Cavaillon J M. Exotoxins and endotoxins: Inducers of inflammatory cytokines[J]. Toxicon, 2018, 149: 45-53.

Liu T, Zhang L, Joo D, et al. NF-κB signaling in inflammation[J]. Sign Trans Targ Ther, 2017, 2(1): 17023.

Hayden M S, Ghosh S. NF-κB in immunobiology[J]. Cell Res, 2011, 21(2): 223-244.

Yuan P, Zhang H, Cai C, et al. Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B[J]. Cell Res, 2015, 25(2): 157-168.

Hing T C, Ho S, Shih D Q, et al. The antimicrobial peptide cathelicidin modulates Clostridium difficile-associated colitis and toxin A-mediated enteritis in mice[J]. Gut, 2013, 62(9): 1295-1305.

Lee J Y, Kim H, Cha M Y, et al. Clostridium difficile toxin A promotes dendritic cell maturation and chemokine CXCL2 expression through p38, IKK, and the NF-kappaB signaling pathway[J]. J Mol Med (Berl), 2009, 87(2): 169-180.

Cowardin C A, Buonomo E L, Saleh M M, et al. The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia[J]. Nat Microbiol, 2016, 1(8): 16108.

Esposito G, Corpetti C, Pesce M, et al. A palmitoylethanolamide producing lactobacillus paracasei improves Clostridium difficile toxin A-induced colitis[J]. Front Pharmacol, 2021, 12: 639728.

Jose S, Mukherjee A, Abhyankar M M, et al. Neutralization of macrophage migration inhibitory factor improves host survival after Clostridium difficile infection[J]. Anaerobe, 2018, 53: 56-63.

猜你喜歡
炎癥反應(yīng)
多巴胺聯(lián)合多巴酚丁胺聯(lián)合治療小兒重癥肺炎的效果和對炎癥反應(yīng)的影響
右美托咪定結(jié)合超聲技術(shù)對患者下肢手術(shù)中止血帶所致氧化應(yīng)激及炎癥反應(yīng)的影響
兩種皮瓣修復(fù)術(shù)治療手外傷軟組織缺損的臨床對比研究
右美托咪定對單肺通氣患者血漿IL—1β及肺組織AQP4、AQP5表達水平的影響
血必凈注射液對改善嚴重多發(fā)傷患者預(yù)后作用的研究
瑞舒伐他汀冠狀動脈造影術(shù)后腎功能損害的保護作用及其機制
中藥方劑對缺血性卒中患者血小板活化、內(nèi)皮功能、炎癥反應(yīng)的影響研究
益氣扶正法在膿毒癥患者中的治療及對血清核因子—κB活性變化的影響研究
右美托咪定對膿毒癥患者圍術(shù)期血漿中細胞因子的影響
中西醫(yī)結(jié)合治療重度燒傷膿毒癥的效果研究
主站蜘蛛池模板: 欧美成人午夜影院| 午夜高清国产拍精品| 欧美日韩专区| 免费看a级毛片| 国产在线视频导航| 这里只有精品在线| 97在线观看视频免费| 日韩精品一区二区三区视频免费看| 成人毛片免费观看| 香蕉网久久| 亚欧成人无码AV在线播放| 日韩亚洲高清一区二区| 成年网址网站在线观看| 在线观看无码av五月花| 日本福利视频网站| 亚洲精品无码日韩国产不卡| 男女男免费视频网站国产| 片在线无码观看| 亚洲色图欧美激情| 精品撒尿视频一区二区三区| 国产成人1024精品| 高清亚洲欧美在线看| 色婷婷丁香| 国产一级小视频| 国产美女自慰在线观看| 久久女人网| 国产精品毛片一区视频播| 欧美色图久久| yjizz视频最新网站在线| 国产亚洲精品91| 国产成人无码久久久久毛片| 中国国产高清免费AV片| 国产在线专区| 在线免费无码视频| 制服丝袜国产精品| 婷婷五月在线| 亚洲欧洲自拍拍偷午夜色| 熟妇无码人妻| Aⅴ无码专区在线观看| 国产激爽爽爽大片在线观看| 国产极品嫩模在线观看91| 午夜激情婷婷| 国产va免费精品| 亚洲国产精品不卡在线| 毛片网站免费在线观看| 亚洲高清国产拍精品26u| 久久99热66这里只有精品一| 亚洲中文字幕97久久精品少妇| 国产色网站| www精品久久| 欧美在线网| 欧美性久久久久| 久久网综合| 亚洲男女天堂| www.youjizz.com久久| 亚洲欧美日韩精品专区| 欧美成人在线免费| 中文字幕亚洲电影| 亚洲精品无码人妻无码| 欧美一区二区三区不卡免费| 欧美日韩va| 国产黄网站在线观看| 爆乳熟妇一区二区三区| 最近最新中文字幕在线第一页| 全裸无码专区| 免费毛片视频| 久久久久无码精品| 一边摸一边做爽的视频17国产| 国产香蕉在线| 福利视频一区| 曰AV在线无码| 精品视频在线一区| 国产精品自在线天天看片| 成人精品午夜福利在线播放| 无码中文字幕精品推荐| 国产夜色视频| 在线免费a视频| 国禁国产you女视频网站| 国产精品福利一区二区久久| 国产精品粉嫩| 国产欧美视频综合二区| 亚洲aaa视频|