
摘 要: 角膜炎是由于角膜防御能力降低,外界病原體或自身疾病等因素侵襲角膜組織所引發的炎癥反應。細胞焦亡是一種與炎癥相關的程序性細胞死亡方式,其在細胞膜上形成的孔道,可允許多種炎性介質的外排,介導炎癥反應。有研究顯示,角膜炎與焦亡的發生相關,抑制焦亡的發生可改善角膜炎的癥狀,是臨床治療的新方向。本文從細胞焦亡的定義及形態學變化、焦亡的發生機制、焦亡在角膜炎中的作用、常見焦亡抑制劑在眼科疾病中應用四個方面進行回顧和總結,以期推動焦亡在角膜炎疾病防控中的研究進程。
關鍵詞: 細胞焦亡;角膜炎;防控;炎癥反應
中圖分類號:
S845"""" 文獻標志碼:A"""" 文章編號: 0366-6964(2025)03-1089-11
收稿日期:2024-04-16
基金項目:國家重點研發計劃資助項目(2023YFD1801100);江蘇省研究生培養創新工程資助項目(KYCX21_3273);揚州大學卓越本科課程建設工程項目資助(2022ZYKCC-33);揚州大學“青藍工程”資助;江蘇省333高層次人才培養工程資助項目;江蘇高校優勢學科建設工程資助項目;江蘇高校品牌專業建設工程資助項目;江蘇省高等學校基礎科學 (自然科學)研究面上項目(22KJB230006)
作者簡介:王志浩(1996-),男,山東無棣人,博士生,主要從事宿主與病原互作研究,E-mail:wzh781531011@163.com
*通信作者:王 亨,主要從事動物臨床疾病診療和發病機制研究,E-mail:sdaulellow@163.com
Progress of Pyroptosis and Its Mechanism of Action in the Keratitis Disease
WANG" Zhihao "GUO" Long "WANG" Peili3, LI" Jianji "WANG" Heng1,2*
(1.Jiangsu Co-innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University,
Yangzhou" 225009," China; 2. Joint International Research Laboratory of Agriculture and
Agri-product Safety of the Ministry of Education, Joint International Research Laboratory
of Important Animal Infectious Diseases and Zoonoses of Jiangsu Higher Education
Institutions, Yangzhou 225009," China; 3. The Third School of Clinical Medicine,
Nanjing University of Chinese Medicine, Shi Zi Street No.100, Hongshan
Road, Nanjing 210028," China)
Abstract:" Keratitis is an inflammation of the cornea caused by external pathogens or diseases, due to a reduction in the corneal defense ability. Pyroptosis is a programmed cell death related to inflammation. The pores formed on the cell membrane can allow the efflux of various inflammatory substances and mediate the inflammatory response. Studies have shown that keratitis is related to the occurrence of pyroptosis. Inhibiting the occurrence of pyroptosis can improve the clinical symptoms of the disease, which is a new direction for clinical treatment. This article reviews and summarizes the definition and morphological changes of pyroptosis, the mechanism of pyroptosis, the role of pyroptosis in keratitis, and the application of common pyroptosis inhibitors in ophthalmic diseases, to promote the research process of pyroptosis in keratitis.
Keywords: pyroptosis; keratitis; prevention and control; inflammation
*Corresponding author:" WANG Heng, E-mail: sdaulellow@163.com
細胞焦亡(pyroptosis)是一種由Gasdermin蛋白(GSDM)家族介導的、伴有炎癥反應、細胞程序性死亡方式。角膜炎是臨床常見的眼科疾病,其病原微生物多為金黃色葡萄球菌(Staphylococcus aureus,S. aureus)、偽中間葡萄球菌(Staphylococcus pseudintermedius,S. pseudintermedius)、銅綠假單胞菌(Pseudomonas aeruginosa,P. aeruginosa)、煙曲霉桿菌(Aspergillus fumigatus,A. fumigatus)、單純皰疹病毒1型(herpes simplex virus type 1,HSV-1)等[1-2]。近期研究發現,上述病原菌感染與細胞焦亡的發生相關,抑制感染過程中的細胞焦亡,可顯著改善疾病進程,成為臨床治療的潛在靶點[3]。本文對細胞焦亡的定義及細胞形態學變化,焦亡的激活途徑,焦亡在細菌、真菌、病毒或其他因素介導的角膜炎中的作用,常見焦亡抑制劑在眼科疾病中應用的研究進展四個方面進行綜述,以期為探究細胞焦亡在眼科疾病防控中的作用、發掘眼科疾病治療新靶點提供參考。
1 細胞焦亡的概述
細胞焦亡是一種由GSDM蛋白家族介導的程序性細胞死亡。GSDM蛋白具有在質膜上成孔活性的N端結構域和抑制N端結構域成孔活性的C端結構域,兩結構域間存在柔性序連接(flexible linker)[4]。焦亡發生依賴于GSDM蛋白家族(除DFNB59)蛋白剪切,形成具有成孔活性的N端區域,該類剪切體形成寡聚體插入細胞膜或線粒體膜,在膜上形成非選擇性孔道[5]。該類孔道允許多種物質,包括炎癥介質[白細胞介素(interleukin,IL)-1β、IL-18、高遷移率族蛋白1(high mobility group box 1 protein, HMGB1)][5-6]、病原菌、H2O和各種離子等自由進出,導致細胞內滲透壓改變,細胞腫脹或破裂[7]。釋放到胞外的內容物是天然免疫系統特異性受體識別信號,引發炎癥反應,促進受損組織的修復[8]。胞內炎癥介質,如促炎細胞因子IL-1β,因缺乏信號肽,無法直接在胞內發揮作用,焦亡孔道促進其胞外釋放,是胞內炎癥介質調節免疫反應的關鍵[9]。
2 焦亡形態學特征
焦亡發生時,表現為核皺縮,染色質DNA斷裂降解,核結構相對完整,TUNEL染色呈陽性[10]。在焦亡發生早期,細胞膜上無選擇性孔道可引發細胞滲透性腫脹,此時細胞膜結構完整,但膜結構中的磷脂酰絲氨酸外翻,Annexin V和PI染色呈雙陽性。掃描電鏡可見細胞呈“荷包蛋”樣[11];明場可見細胞“外吐大泡”;免疫熒光可見GSDM蛋白與細胞膜共定位[12]。焦亡發生后期,腫脹的細胞發生破裂,掃描電鏡可見細胞呈“爛白菜葉”狀[11]。各種細胞程序性死亡的特點和區別詳見表1。
3 焦亡的發生機制
細胞焦亡發生的途徑有四種,包括經典炎癥小體誘導途徑(Caspase-1依賴型)、非經典炎癥小體誘導途徑(Caspase-4/5/11依賴型)、Caspase-3/8介導途徑和GSDM蛋白相關誘導途徑[14]。本文將從以上四個方面,闡述焦亡發生機制的研究進展。
3.1 經典炎癥小體誘導途徑
因炎癥小體核心蛋白的不同,其激活方式有差距,介導焦亡的炎癥小體核心蛋白主要有NLRP3、NLRC4、AIM2、和NLRP1四種。
3.1.1 NLRP3炎癥小體
NLRP3炎癥小體的活化始于模式識別受體識別刺激信號,在凋亡相關微粒蛋白(apoptosis-associated speck-like protein containing CARD,ASC)的輔助下與Pro-Caspase-1蛋白結合,激活NLRP3炎癥小體[15],形成Cleaved-Caspase-1,特異性切割GSDMD,生成GSDMD-N(又稱之為成孔結構域,pore-forming domain,PFD),進而介導焦亡[16-17]。該類焦亡激活方式可見于多種動物臨床疾病,如S. pseudintermedius介導的犬角膜潰瘍[18],S. aureus胞內感染誘導的奶牛乳腺炎[19],非洲豬瘟病毒感染過程[20],禽致病性大腸桿菌介導的雞肝和回腸損傷[21-22]。
3.1.2 NLRC4炎癥小體誘導途徑
NLRC4炎癥小體的NLRC4可PrgJ和NAIP2的復合物激活。第一個活化的NLRC4 “催化表面”結合下一個NLRC4蛋白分子的“受體表面”,10~12個NAIP2/"" NLRC4蛋白分子相互作用聚合成盤狀“PrgJ-NAIP2-NLRC4ΔCARD”結構,招募并活化Caspase-1,生成PFD介導焦亡[23-24]。該類焦亡激活方式與多種人畜共患性疾病相關,如弓形蟲介導的羊膜細胞焦亡[25]和多種臨床病原菌的感染過程,包括P. aeruginosa、沙門菌、傷寒沙門菌、弗氏志賀菌、嗜肺軍團、伯克霍爾德菌等多種人畜共患菌[26-27]。
3.1.3 AIM2炎癥小體誘導途徑
細胞內出現的dsDNA可被AIM2炎癥小體的HIN結構域識別,并與熱蛋白結構域(pyrin domain,PYD)解離,解離后的PYD相互結合形成PYD-PYD,招募ASC并促進其CARD區域與Pro-Caspase-1結合[28],形成AIM2-ASC-Pro-Caspase-1炎癥復合體,介導Caspase-1活化,進而促進PFD形成,介導焦亡[29-30]。此外,細胞內IFN-γ、I-IFN、IL-10、IL-1α、IL-18、IL-1β等細胞因子均可與PYD區域結合,激活AIM2炎癥小體,介導細胞焦亡[31-32]。偽狂犬病病毒、牛支原體、S. aureus等常見病原感染過程中,可通過激活AIM2炎癥小體加劇組織損傷,并通過焦亡途徑擴大感染面積[33-34]。
3.1.4 NLRP1炎癥小體誘導途徑
微生物入侵機體或DAMPs刺激,可促進NLRP1中FIIND結構域水解[35],形成NBD-LRR-ZU5和UPA-CARD復合物[36]。NBD-LRR-ZU5復合物可水解NLRP1的N端,激活NLRP1炎癥小體;UPA-CARD復合物可活化Caspase-1,促進PFD的形成,介導焦亡[37]。炭疽致死毒素[38]、剛地弓形蟲分泌的LF蛋白酶或IpaH7.8[39]、細菌的胞壁酰二肽等[40]均可水解NLRP1的N端區域,激活NLRP1炎癥小體,介導焦亡。此外,NLRP1通過上調IL-11的表達,抑制豬傳染性胃腸炎病毒和豬丁型冠狀病毒的復制,緩解機體損傷[41];另有研究指出,肝片吸蟲或泰勒蟲感染水牛或黃牛過程中,通過激活NLRP1,加劇機體炎癥發應[42-43]。
3.2 非經典炎癥小體激活途徑
研究顯示,LPS可直接激活宿主內的Caspase-4/5/11,并對GSDMD蛋白進行特異性切割,形成PFD蛋白,介導細胞焦亡[14,44-45]。活化的Caspase-11可特異性激活跨膜半通道蛋白,促進ATP的激活和釋放,進而與P2X7受體結合,通過激活NLRP3炎癥小體介導焦亡[46]。非洲豬瘟病毒通過激活Caspase-4,通過差異性剪切GSDMA調節焦亡,進行自我復制[47];LPS可通過Caspase-1/4激活GSDMD,介導奶牛子宮內膜上皮細胞焦亡[48];Caspase-11在弓形蟲[49]和布魯氏菌[50]感染早期,通過促進IL-18的表達增強機體炎癥反應,緩解組織損傷。
3.3 Caspase-3/8介導途徑
Caspase-3可被多種刺激物質激活,如化療藥物、TNF、病毒感染、凋亡素和視網膜中全反式視黃醛等,進而特異性剪切GSDME蛋白,介導細胞焦亡[51]。研究指出,鴨甲型肝炎1型病毒、禽傳染性支氣管炎病毒、口蹄疫病毒、豬繁殖與呼吸綜合征病毒等感染過程中,均通過激活Caspase-3剪切GSDME,介導焦亡[52-54]。
Caspase-8有四種焦亡激活途徑:①Yersinia效應蛋白YopJ抑制TGF-β活化激酶-1或IKK激酶活性,調節Caspase-8活化和PFD形成[55]。②Caspase-8與受體相互作用蛋白激酶1形成復合體,激活Z-DNA結合蛋白1-NLRP3炎癥小體,調節NLRP3炎癥小體的活性[56]。③Caspase-8直接剪切Pro-Caspase-3,促進GSDME-N蛋白N活化[55];Caspase-8將Bid蛋白切割成“tBid”并遷移到線粒體膜形成Bax/Bak孔,釋放細胞色素C,激活Caspase-3[57]。④癌細胞在TNF-α或α-酮戊二酸刺激下,Caspase-8剪切GSDMC成GSDMC-N,介導焦亡,發揮治療作用[58]。豬繁殖與呼吸綜合征病毒,通過激活Caspase-8介導焦亡釋放到胞外,促進自我復制[59];豬鏈球菌和沙門菌通過Caspase-8/GSDMD介導焦亡[60]。
3.4 GSDM蛋白相關誘導途徑
不同種GSDM蛋白激活方式不同。GSDMA可被化膿性鏈球菌的Speb剪切[61],兩棲動物、爬行動物和禽類動物中的Caspase-1可直接剪切GSDMA[62];GSDMB蛋白可被顆粒酶A(granzymes A, Gzm A)剪切[63],該蛋白在犬、貓中的缺失,是該類動物對新型冠狀病毒感染(COVID-19)不敏感的主要因素[64]。GSDME通過Gzm B剪切激活[65],口蹄疫病毒的3C蛋白酶可裂解GSDME的Q271-G272位點,介導焦亡[52]。GSDMD蛋白的膜成孔性受ROS的正調控[66],而受胞內體分選轉運復合物的負調控[67]。此外,中性粒細胞彈性蛋白酶可直接切割GSDMD,生成具有完全活性的ELANE衍生的GSDMD-NT片段(GSDMD-ent)介導焦亡[68]。
4 焦亡與角膜炎
4.1 焦亡與細菌性角膜炎
P. aeruginosa是臨床上常見的導致角膜潰瘍的病原菌,對P. aeruginosa角膜炎患者和大鼠角膜潰瘍模型的角膜樣品進行檢測,發現Caspase-4/5(人)/11(小鼠)蛋白表達上調,P. aeruginosa釋放的LPS通過非經典炎癥小體激活途徑介導焦亡[69]。在P. aeruginosa侵染過程中,一種在骨髓細胞中表達的PRR-髓系細胞觸發受體2(triggering receptor expressed on myeloid cells-2,TREM2),通過抑制Caspase-1-GSDMD焦亡途徑,增強宿主細胞對P. aeruginosa感染的防御[70]。P. aeruginosa的T3SS分泌蛋白可將不同的毒素蛋白導入細胞內激活相應的受體蛋白,如鞭毛蛋白(flagellin)可激活NAIP6和NAIP5,針蛋白(needle)可激活NAIP2,Rod蛋白可激活NAIP1,以上被激活的NAIP6、NAIP5、NAIP2和NAIP1均可激活NLRC4炎癥小體;而ExoS蛋白更可直接激活NLRP3炎癥小體。活化后的NLRC4炎癥小體和NLRP3炎癥小體通過經典途徑介導細胞焦亡[71]。另有研究顯示,P. aeruginosa的T3SS效應子ExoS通過抑制Caspase-4的活化抑制細胞焦亡,延長細胞壽命,進而促進P. aeruginosa在眼表細胞內的定植和增殖[72]。
S. aureus亦是導致角膜潰瘍的常見病原菌,有研究顯示其胞內感染過程中通過激活NLRP3炎癥小體[19]或抑制mTORC1/STAT3信號軸介導細胞焦亡[73],另有研究指出,其分泌的HLA毒素可促進GSDME蛋白的剪切,介導焦亡[74]。但S. aureus是否導致角膜細胞發生焦亡有待進一步研究。S. pseudintermedius是繼S. aureus和P. aeruginosa后的第三種臨床常見角膜潰瘍致病菌[1],本課題組前期研究發現S. pseudintermedius可胞內感染犬角膜上皮細胞,并通過ROS-NLRP3-GSDMD信號軸介導細胞焦亡[18]。綜上所述,細胞焦亡與細菌性角膜炎的發生直接相關,是后期相關疾病治療的潛在靶點。
4.2 焦亡與真菌性角膜炎
真菌性角膜潰瘍,具有臨床發病率高、治療難度大、極易復發的特點。A. fumigatus是常見的真菌性角膜炎病原菌[3]。研究顯示,A. fumigatus感染角膜后,可促進干擾素-1(interferon-1,IFN-1)的產生,大量釋放的IFN-1與其特異性受體IFNR結合,促進JAK/STAT信號傳導,通過Caspase-1-GSDMD途徑介導細胞焦亡[75]。A. fumigatus感染人角膜上皮細胞后,可促進細胞內胸腺基質淋巴細胞生成素(thymic stromal lymphopoietin,TSLP)的合成與釋放,釋放的TSLP與其特異性受體TSLPR結合,通過經典NLRP3炎癥小體活化途徑,介導細胞焦亡[76]。A. fumigatus感染時,可誘導pannexin 1通道的形成,促進ATP的外排,胞外的ATP與P2X7受體結合,通過經典NLRP3炎癥小體活化途徑,介導細胞焦亡和IL-1β的釋放,加劇炎癥反應[77]。預先向小鼠結膜下注射GSDMD siRNA,后構建A. fumigatus小鼠角膜潰瘍模型。試驗結果表明沉默GSDMD的表達,可有效抑制A. fumigatus感染小鼠角膜IFNR、JAK/STAT和Caspase-1信號通路的活化,降低角膜中IL-1β的分泌,減少中性粒細胞和巨噬細胞向感染角膜募集,表明靶向GSDMD蛋白的表達是A. fumigatus角膜炎的治療靶點[75]。另有研究發現,A. fumigatus感染早期,Caspase-8通過抑制RIPK3/MLKL信號通路,促進NLRP3炎癥小體活化,介導細胞焦亡,添加Caspase-8的活化抑制劑(Z-IETD-FMK)可有效緩解疾病進程[78]。
4.3 焦亡與病毒性角膜炎
HSV-1是導致傳染性角膜炎常見病原體。研究發現,在HSV-1病毒感染早期,NLRP3、NLRP12和IFI16炎癥小體被激活,促進角膜組織中Caspase-1、IL-1β、IL-18和GSDMD蛋白的活化,并招募單核細胞和中性粒細胞向受損區域遷移,從而加劇炎癥反應,導致角膜潰瘍和混濁[79]。另有研究報道,HSV-1感染小膠質細胞后,被細胞內PRR識別,激活NF-κB信號通路,通過NLRP3炎癥小體經典途徑介導細胞焦亡[80]。
4.4 焦亡與其他原因導致的角膜炎
近期研究顯示,糖尿病導致的角膜水腫和內皮細胞代償,也與焦亡發生相關[81]。在高糖刺激下,lncRNA KCNQ1OT1作為競爭性內源性RNA(ceRNA),可抑制miR-214,靶向促進Caspase-1的活化,介導高糖條件下的角膜細胞焦亡[82]。此外,空氣中的PM2.5可通過ROS/NLRP3/GSDMD介導人角膜上皮細胞焦亡[83]。在角膜堿燒傷模型中,角膜組織中TLR4-MyD88-Caspase-8信號軸激活,導致NLRP3炎癥小體的活化,介導焦亡[84]。
5 焦亡抑制劑在角膜炎疾病治療中的應用
多項研究證實,細胞焦亡與眼部疾病的發生和發展直接相關,使用靶向藥物抑制焦亡,是目前眼科疾病治療的新方向。目前,已被證實可應用于眼科疾病治療的焦亡抑制劑可分為兩大類,一種是抑制焦亡的激活,另一種是抑制GSDMD蛋白的活化[85]。
5.1 焦亡活化途徑抑制劑
目前多項研究顯示,抑制NLRP3炎癥小體的活化,可抑制焦亡的激活,顯著緩解眼科疾病臨床癥狀。MCC950可抑制Nek7-NLRP3相互作用,阻斷NLRP3炎癥小體的活化途徑。在視網膜損傷修復(高糖刺激下的人視網膜細胞和C57BL/6J小鼠視網膜缺血再灌注)[86]、犬細菌性角膜炎[87]等相關疾病模型中MCC950均表現良好的治療效果。INF39對NLRP3炎癥小體活化的抑制機理與MCC950相似,通過阻滯Nek7-NLRP3兩者的相互作用發揮功能[88]。INF39可有效緩解高糖刺激下人視網膜色素上皮細胞(ARPE-19)的焦亡現象[89]。H3松弛素(H3 relaxin)通過阻斷P2X7受體,抑制NLRP3炎癥小體的活化,可緩解高糖誘導下視網膜病變過程中細胞凋亡和焦亡現象[90]。褪黑激素(melatonin)通過抑制NF-κB/NLRP3軸,阻斷大鼠高眼壓損傷后的視網膜神經元細胞焦亡[91]。骨化三醇(calcitriol)通過抑制NLRP3-ASC-Caspase-1-GSDMD細胞焦亡途徑,有效緩解干眼癥患者的臨床癥狀和高滲應激(hyperosmotic stress)誘導的人角膜上皮細胞焦亡[92]。曲尼司特(tranilast)通過阻斷NLRP3寡聚化抑制NLRP3炎癥小體的組裝過程,與線粒體抗氧化劑和其他抗炎藥聯合使用,可緩解高糖誘導的人視網膜細胞焦亡和凋亡[93]。
另有研究顯示,維生素D3可降低玻璃體切除患者、特發性黃斑裂孔患者和糖尿病視網膜病變患者的病變組織中的ROS水平,進而抑制ROS/TXNIP/NLRP3經典炎癥小體焦亡激活途徑,緩解組織損傷[94]。胃饑餓素(ghrelin)和硫化氫(hydrogen sulfid)通過阻斷高糖誘導的ARPE-19細胞內ROS累積,阻滯經典NLRP3炎癥小體焦亡活化途徑,降低細胞的炎性損傷[95]。黃芩苷(baicalin)通過增加miR-223的表達,抑制經典NLRP3炎癥小體焦亡活化途徑,緩解β淀粉酶(Aβ-envoked)處理ARPE-19后導致的細胞損傷[96]。此外,蟛蜞菊內酯(wedelolactone)具有靶向抑制Caspase-4/5/11-GSDMD信號通路活化的作用,可有效緩解P. aeruginosa誘導的人原代角膜上皮細胞和小鼠角膜潰瘍的損傷[69]。另有報道指出,地塞米松通過抑制Caspase-1-GSDMD介導的細胞焦亡通路,緩解小鼠角膜堿燒傷的臨床癥狀[97]。
5.2 GSDMD蛋白抑制劑
有研究顯示雙硫侖(disulfiram)通過共價修飾GSDMD中的Cys191/Cys192位點,抑制GSDMD蛋白的寡聚化,阻斷焦亡孔道的形成來抑制細胞焦亡[98]。雙硫侖可有效降低小鼠堿燒傷模型受損角膜組織的炎性細胞浸潤和新生血管形成[99]。此外,雙硫侖與抗真菌藥物的聯合使用,通過抑制GSDMD蛋白的活化,可有效降低小鼠A. fumigatus角膜潰瘍模型角膜組織中炎性細胞的浸潤和IL-1β的釋放[100]。此外,雙硫侖在LPS誘導的呼吸窘迫綜合征中也表現出良好的緩解效果[101]。近期研究指出,富馬酸二甲酯(dimethyl fumarate,DMF)的半胱氨酸殘基與GSDMD蛋白發生結合,形成S-(2-琥珀酰)-半胱氨酸,阻滯GSDMD蛋白的寡聚化,抑制Caspase-1對GSDMD蛋白的特異性剪切作用,進而抑制細胞焦亡[102]。在A. fumigatus角膜損傷小鼠模型中,DMF通過抑制A. fumigatus生長、促進Nrf2信號通路活化、抑制GSDMD-N蛋白表達的方式,緩解感染過程中角膜損傷程度[103]。本課題組前期研究顯示,DMF以濃度依賴性抑制S. pseudintermedius的生長和生物膜的形成,并通過抑制相關致病毒力基因的表達和GSDMD蛋白的活化,緩解S. pseudintermedius胞內感染犬角膜上皮細胞導致的細胞焦亡和氧化損傷。
6 小結與展望
焦亡發生在細胞膜上形成的非選擇性孔道,促進炎性因子(IL-1β、IL-18和HMGB1)、ATP、K+、胞內菌及病毒的外排,促進“炎性風暴”的形成和感染面積的擴大,報道中指出多種人畜共患病原的感染過程均與焦亡的發生相關。深入探究焦亡發生與病原的致病機理,是后續獸醫臨床藥物開發的新方向。
焦亡的發生,可加劇中性粒細胞和巨噬細胞向受損角膜組織的招募遷移,加重角膜組織的炎性損傷和水腫。目前研究顯示,通過抑制焦亡的激活途徑或直接抑制GSDMD蛋白的活化,可有效緩解角膜炎疾病進程,改善臨床癥狀,提高預后。但目前有多種抑制劑還停留在體外研究階段,并未進行臨床病例試驗,且部分藥物的藥代動力學尚不明確,有待后續的研究。此外,S. aureus介導的角膜潰瘍是否與焦亡發生相關尚不明確,有待進一步研究。
參考文獻(References):
[1] WANG Z H, GUO L, LI J, et al. Antibiotic resistance, biofilm formation, and virulence factors of isolates of staphylococcus pseudintermedius from healthy dogs and dogs with keratitis[J]. Front Vet Sci, 2022, 9:903633.
[2] CABRERA-AGUAS M, CHIDI-EGBOKA N, KANDEL H, et al. Antimicrobial resistance in ocular infection:a review[J]. Clin Exp Ophthalmol, 2024, 52(3):258-275.
[3] LIU W C, TIAN X, GU L W, et al. Oxymatrine mitigates Aspergillus fumigatus keratitis by suppressing fungal activity and restricting pyroptosis[J]. Exp Eye Res, 2024, 240:109830.
[4] BROZ P, PELEGR N P, SHAO F. The gasdermins, a protein family executing cell death and inflammation[J]. Nat Rev Immunol, 2020, 20(3):143-157.
[5] LIU X, ZHANG Z B, RUAN J B, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610):153-158.
[6] DING J J, WANG K, LIU W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family[J]. Nature, 2016, 535(7610):111-116.
[7] JORGENSEN I, ZHANG Y, KRANTZ B A, et al. Pyroptosis triggers pore-induced intracellular traps (PITs) that capture bacteria and lead to their clearance by efferocytosis[J]. J Exp Med, 2016, 213(10):2113-2128.
[8] COLL R C, SCHRODER K, PELEGR N P. NLRP3 and pyroptosis blockers for treating inflammatory diseases[J]. Trends Pharmacol Sci, 2022, 43(8):653-668.
[9] CHAN A H, SCHRODER K. Inflammasome signaling and regulation of interleukin-1 family cytokines[J]. J Exp Med, 2020, 217(1): e20190314.
[10] LI W, SUN J, ZHOU X X, et al. Mini-review: GSDME-mediated pyroptosis in diabetic nephropathy[J]. Front Pharmacol, 2021, 12:780790.
[11] CHEN X, HE W T, HU L C, et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis[J]. Cell Res, 2016, 26(9):1007-1020.
[12] TENG J F, MEI Q B, ZHOU X G, et al. Polyphyllin VI induces caspase-1-mediated pyroptosis via the induction of ROS/NF-κB/NLRP3/GSDMD signal axis in non-small cell lung cancer[J]. Cancers (Basel), 2020, 12(1):193.
[13] CHEN M N, RONG R, XIA X B. Spotlight on pyroptosis: role in pathogenesis and therapeutic potential of ocular diseases[J]. J Neuroinflammation, 2022, 19(1):183.
[14] TOLDO S, ABBATE A. The role of the NLRP3 inflammasome and pyroptosis in cardiovascular diseases[J]. Nat Rev Cardiol, 2024, 21(4):219-237.
[15] ZHENG X T, CHEN W W, GONG F C, et al. The role and mechanism of pyroptosis and potential therapeutic targets in sepsis: a review[J]. Front immunol, 2021, 12:711939.
[16] SHI J J, ZHAO Y, WANG K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death[J]. Nature, 2015, 526(7575):660-665.
[17] WANG K, SUN Q, ZHONG X, et al. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis[J]. Cell, 2020, 180(5):941-955.
[18] WANG Z H, GUO L, YUAN C N, et al. Staphylococcus pseudintermedius induces pyroptosis of canine corneal epithelial cells by activating the ROS-NLRP3 signalling pathway[J]. Virulence, 2024, 15(1):2333271.
[19] WANG X Z, LIU M C, GENG N, et al. Staphylococcus aureus mediates pyroptosis in bovine mammary epithelial cell via activation of NLRP3 inflammasome[J]. Vet Res, 2022, 53(1):10.
[20] CHEN Y, SONG Z B, CHANG H, et al. Dihydromyricetin inhibits African swine fever virus replication by downregulating toll-like receptor 4-dependent pyroptosis in vitro[J]. Vet Res, 2023, 54(1):58.
[21] SHI C X, WANG J Q, ZHANG R C, et al. Dihydromyricetin alleviates Escherichia coli lipopolysaccharide-induced hepatic injury in chickens by inhibiting the NLRP3 inflammasome[J]. Vet Res, 2022, 53(1):6.
[22] CHANG Y C, YUAN L, LIU J R, et al. Dihydromyricetin attenuates Escherichia coli lipopolysaccharide-induced ileum injury in chickens by inhibiting NLRP3 inflammasome and TLR4/NF-κB signalling pathway[J]. Vet Res, 2020, 51(1):72.
[23] MATICO R E, YU X D, MILLER R, et al. Structural basis of the human NAIP/NLRC4 inflammasome assembly and pathogen sensing[J]. Nat Struct Mol Biol, 2024, 31(1):82-91.
[24] HU Z H, ZHOU Q, ZHANG C L, et al. Structural and biochemical basis for induced self-propagation of NLRC4[J]. Science, 2015, 350(6259):399-404.
[25] QUAN J H, GAO F F, MA T Z, et al. Toxoplasma gondii induces pyroptosis in human placental trophoblast and amniotic cells by inducing ROS production and activation of cathepsin B and NLRP1/NLRP3/NLRC4/AIM2 inflammasome[J]. Am J Pathol, 2023, 193(12):2047-2065.
[26] MIAO E A, MAO D P, YUDKOVSKY N, et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome[J]. Proc Natl Acad Sci U S A, 2010, 107(7):3076-3080.
[27] FU J N, SCHRODER K, WU H. Mechanistic insights from inflammasome structures[J]. Nat Rev Immunol, 2024, 24(7):518-535.
[28] WANG B, BHATTACHARYA M, ROY S, et al. Immunobiology and structural biology of AIM2 inflammasome[J]. Mol Aspects Med, 2020, 76:100869.
[29] BROZ P, DIXIT V M. Inflammasomes:mechanism of assembly, regulation and signalling[J]. Nat Rev Immunol, 2016, 16(7):407-420.
[30] 陳 云, 張永杰. 乳酸脫氫酶A在腫瘤微環境中的作用及相關藥物研究進展[J]. 醫學綜述, 2023, 29(8):1533-1538.
CHEN Y, ZHANG Y J. Research progress of role of lactate Dehydrogenase A in tumor microenvironment and related drugs[J]. Medical Review, 2023, 29(8):1533-1538. (in Chinese)
[31] YU X, DU Y, CAI C M, et al. Inflammasome activation negatively regulates MyD88-IRF7 type I IFN signaling and anti-malaria immunity[J]. Nat Commun, 2018, 9(1):4964.
[32] SORRENTINO R, TERLIZZI M, DI CRESCENZO V G, et al. Human lung cancer-derived immunosuppressive plasmacytoid dendritic cells release IL-1α in an AIM2 inflammasome-dependent manner[J]. Am J Pathol, 2015, 185(11):3115-3124.
[33] ZHOU Q Q, ZHANG L F, LIN Q H, et al. Pseudorabies virus infection activates the TLR-NF-κB axis and AIM2 inflammasome to enhance inflammatory responses in mice[J]. J Virol, 2023, 97(3):e0000323.
[34] LIU C F, YUE R C, YANG Y, et al. AIM2 inhibits autophagy and IFN-β production during M. bovis infection[J]. Oncotarget, 2016, 7(30):46972-46987.
[35] DE RIVERO VACCARI J P, DIETRICH W D, KEANE R W. Activation and regulation of cellular inflammasomes:gaps in our knowledge for central nervous system injury[J]. J Cereb Blood Flow Metab, 2014, 34(3):369-375.
[36] NEIMAN-ZENEVICH J, LIAO K C, MOGRIDGE J. Distinct regions of NLRP1B are required to respond to anthrax lethal toxin and metabolic inhibition[J]. Infect Immun, 2014, 82(9):3697-3703.
[37] SANDSTROM A, MITCHELL P S, GOERS L, et al. Functional degradation:a mechanism of NLRP1 inflammasome activation by diverse pathogen enzymes[J]. Science, 2019, 364(6435):eaau1330.
[38] CHAVARR A-SMITH J, MITCHELL P S, HO A M, et al. Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation[J]. PLoS Pathog, 2016, 12(12):e1006052.
[39] TAABAZUING C Y, GRISWOLD A R, BACHOVCHIN D A. The NLRP1 and CARD8 inflammasomes[J]. Immunol Rev, 2020, 297(1):13-25.
[40] CHAVARR A-SMITH J, VANCE R E. The NLRP1 inflammasomes[J]. Immunol Rev, 2015, 265(1):22-34.
[41] HE H J, LI Y F, CHEN Y Y, et al. NLRP1 restricts porcine deltacoronavirus infection via IL-11 inhibiting the phosphorylation of the ERK signaling pathway[J]. J Virol, 2024, 98(3):e0198223.
[42] YIN F Y, LIU J L, GAO S D, et al. Exploring the TLR and NLR signaling pathway relevant molecules induced by the Theileria annulata infection in calves[J]. Parasitol Res, 2018, 117(10):3269-3276.
[43] ZHANG F K, HOU J L, GUO A J, et al. Expression profiles of genes involved in TLRs and NLRs signaling pathways of water buffaloes infected with Fasciola gigantica[J]. Mol Immunol, 2018, 94:18-26.
[44] FANG Y, TIAN S W, PAN Y T, et al. Pyroptosis:a new frontier in cancer[J]. Biomed Pharmacother, 2020, 121:109595.
[45] 肖金龍, 王 浩, 萬 全, 等. 撒壩豬源E. coli高致病性毒力島通過NLRP3/ASC/Caspase-1途徑誘導IPEC-J2細胞焦亡[J]. 畜牧獸醫學報, 2023, 54(12): 5218-5227.
XIAO J L, WANG H, WAN Q, et al. Induction of IPEC-J2 pyroptosis by E.coli HPI from Saba pig via NLRP3/ASC/Caspase-1 pathway[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5218-5227. (in Chinese)
[46] YU P, ZHANG X, LIU N, et al. Pyroptosis:mechanisms and diseases[J]. Sig Transduct Target Ther, 2021, 6(1):128.
[47] LI S, SONG J, LIU J, et al. African swine fever virus infection regulates pyroptosis by cleaving gasdermin A via active caspase-3 and caspase-4[J]. J Biol Chem, 2024, 300(6):107307.
[48] MA X Y, LI Y J, SHEN W X, et al. LPS mediates bovine endometrial epithelial cell pyroptosis directly through both NLRP3 classical and non-classical inflammasome pathways[J]. Front Immunol, 2021, 12:676088.
[49] COUTERMARSH-OTT S L, DORAN J T, CAMPBELL C, et al. Caspase-11 modulates inflammation and Attenuates Toxoplasma gondii pathogenesis[J]. Mediators Inflamm, 2016, 2016:9848263.
[50] LACEY C A, MITCHELL W J, DADELAHI A S, et al. Caspase-1 and Caspase-11 mediate pyroptosis, inflammation, and control of Brucella joint infection[J]. Infect Immun, 2018, 86(9):e00361-18.
[51] LIU Z R, LI Y Q, ZHU Y L, et al. Apoptin induces pyroptosis of colorectal cancer cells via the GSDME-dependent pathway[J]. Int J Biol Sci, 2022, 18(2):717-730.
[52] REN X J, YIN M G, ZHAO Q Q, et al. Foot-and-mouth disease virus induces porcine gasdermin e-mediated pyroptosis through the protease activity of 3Cpro[J]. J Virol, 2023, 97(7):e0068623.
[53] WANG J Y, YAN H, BEI L, et al. 2A2 protein of DHAV-1 induces duck embryo fibroblasts gasdermin E-mediated pyroptosis[J]. Vet Microbiol, 2024, 290:109987.
[54] WANG S J, XU M Y, YANG K B, et al. Streptococcus suis contributes to inguinal lymph node lesions in piglets after highly pathogenic porcine reproductive and respiratory syndrome virus infection[J]. Front Microbiol, 2023, 14:1159590.
[55] JIANG M X, QI L, LI L S, et al. Caspase-8:a key protein of cross-talk signal way in \"PANoptosis\" in cancer[J]. Int J Cancer, 2021, 149(7):1408-1420.
[56] ZHENG M, KANNEGANTI T D. The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis)[J]. Immunol Rev, 2020, 297(1):26-38.
[57] ORNING P, LIEN E. Multiple roles of caspase-8 in cell death, inflammation, and innate immunity[J]. J Leukoc Biol, 2021, 109(1):121-141.
[58] ZHANG J Y, ZHOU B, SUN R Y, et al. The metaboliteα-KG induces GSDMC-dependent pyroptosis through death receptor 6-activated caspase-8[J]. Cell Res, 2021, 31(9):980-997.
[59] SNCHEZ-CARVAJAL J M, RUEDAS-TORRES I, CARRASCO L, et al. Activation of regulated cell death in the lung of piglets infected with virulent PRRSV-1 Lena strain occurs earlier and mediated by cleaved Caspase-8[J]. Vet Res, 2021, 52(1):12.
[60] WANG S J, WANG G, TANG Y D, et al. Streptococcus suis serotype 2 infection induces splenomegaly with splenocyte apoptosis[J]. Microbiol Spectr, 2022, 10(6):e0321022.
[61] LAROCK D L, JOHNSON A F, WILDE S, et al. Group A Streptococcus induces GSDMA-dependent pyroptosis in keratinocytes[J]. Nature, 2022, 605(7910):527-531.
[62] BILLMAN Z P, KOVACS S B, WEI B, et al. Caspase-1 activates gasdermin A in non-mammals[J]. Elife, 2024, 12:RP92362.
[63] ZHOU Z W, HE H B, WANG K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells[J]. Science, 2020, 368(6494):965.
[64] CUI H R, ZHANG L L. Key components of inflammasome and pyroptosis pathways are deficient in canines and felines, possibly affecting their response to SARS-CoV-2 infection[J]. Front Immunol, 2021, 11:592622.
[65] ZHANG Z B, ZHANG Y, XIA S Y, et al. Gasdermin E suppresses tumour growth by activating anti-tumour immunity[J]. Nature, 2020, 579(7799):415-420.
[66] GAN X, XIE J W, DONG Z J, et al. Discovery of pyroptosis-inducing drugs and Antineoplastic activity based on the ROS/ER stress/pyroptosis axis[J]. Curr Med Chem, 2024, 31(30):4880-4897.
[67] LI Z T, MO F Y, WANG Y X, et al. Enhancing gasdermin-induced tumor pyroptosis through preventing ESCRT-dependent cell membrane repair augments antitumor immune response[J]. Nat Commun, 2022, 13(1):6321.
[68] KAMBARA H, LIU F, ZHANG X Y, et al. Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death[J]. Cell Rep, 2018, 22(11):2924-2936.
[69] XU S, LIU X T, LIU X T, et al. Wedelolactone ameliorates Pseudomonas aeruginosa-induced inflammation and corneal injury by suppressing caspase-4/5/11/GSDMD-mediated non-canonical pyroptosis[J]. Exp Eye Res, 2021, 211:108750.
[70] QU W T, WANG Y, WU Y J, et al. Triggering receptors expressed on Myeloid cells 2 Promotes corneal resistance against Pseudomonas aeruginosa by inhibiting caspase-1-dependent pyroptosis[J]. Front Immunol, 2018, 9:1121.
[71] REUVEN A D, MWAURA B W, BLISKA J B. ExoS effector in Pseudomonas aeruginosa hyperactive type III secretion system mutant promotes enhanced plasma membrane rupture in neutrophils[J]. bioRxiv, 2024, 2024.01.24.577040.
[72] KROKEN A R, KLEIN K A, MITCHELL P S, et al. Intracellular replication of Pseudomonas aeruginosa in epithelial cells requires suppression of the caspase-4 inflammasome[J]. mSphere, 2023, 8(5):e0035123.
[73] YAO R Y, CHEN Y H, HAO H F, et al. Pathogenic effects of inhibition of mTORC1/STAT3 axis facilitates Staphylococcus aureus-induced pyroptosis in human macrophages[J]. Cell Commun Signal, 2020, 18(1):187.
[74] LIU C C, WOLF M, ORTEGO R, et al. Characterization of immunomodulating agents from Staphylococcus aureus for priming immunotherapy in triple-negative breast cancers[J]. Sci Rep, 2024, 14(1):756.
[75] ZHAO W Y, YANG H, LYU L Y, et al. GSDMD, an executor of pyroptosis, is involved in IL-1β secretion in Aspergillus fumigatus keratitis[J]. Exp Eye Res, 2021, 202:108375.
[76] JI Q S, WANG L S, LIU J J, et al. Aspergillus fumigatus-stimulated human corneal epithelial cells induce pyroptosis of THP-1 macrophages by secreting TSLP[J]. Inflammation, 2021, 44(2):682-692.
[77] YANG X J, ZHAO G Q, YAN J W, et al. Pannexin 1 channels contribute to IL-1β expression via NLRP3/caspase-1 inflammasome in Aspergillus fumigatus Keratitis[J]. Current Eye Res, 2019, 44(7):716-725.
[78] WANG L M, YAN H J, CHEN X M, et al. Caspase-8 is involved in pyroptosis, necroptosis and the maturation and release of IL-1β in Aspergillus fumigatus keratitis[J]. Int Immunopharmacol, 2022, 113:109275.
[79] COULON P G, DHANUSHKODI N, PRAKASH S, et al. NLRP3, NLRP12, and IFI16 inflammasomes induction and caspase-1 activation triggered by virulent HSV-1 strains are associated with severe corneal inflammatory herpetic disease[J]. Front Immunol, 2019, 10:1631.
[80] HU X, ZENG Q Z, XIAO J, et al. Herpes simplex virus 1 induces microglia gasdermin D-dependent pyroptosis through activating the NLR family pyrin domain containing 3 inflammasome[J]. Front Microbiol, 2022, 13:838808.
[81] ZHAO H K, DAI Y T, LI Y Q, et al. TNFSF15 inhibits progression of diabetic retinopathy by blocking pyroptosis via interacting with GSDME[J]. Cell Death Dis, 2024, 15(2):118.
[82] ZHANG Y Y, SONG Z, LI X R, et al. Long noncoding RNA KCNQ1OT1 induces pyroptosis in diabetic corneal endothelial keratopathy[J]. Am J Physiol Cell Physiol, 2020, 318(2):C346-C359.
[83] NIU L L, LI L P, XING C, et al. Airborne particulate matter (PM2. 5) triggers cornea inflammation and pyroptosis via NLRP3 activation[J]. Ecotoxicol Environ Saf, 2021, 207:111306.
[84] CHEN H, LI Y H, GU J J, et al. TLR4-MyD88 pathway promotes the imbalanced activation of NLRP3/NLRP6 via caspase-8 stimulation after alkali burn injury[J]. Exp Eye Res, 2018, 176:59-68.
[85] VANDE WALLE L, LAMKANFI M. Drugging the NLRP3 inflammasome:from signalling mechanisms to therapeutic targets[J]. Nat Rev Drug Dis, 2024, 23(1):43-66.
[86] HUANG L B, YOU J M, YAO Y, et al. High glucose induces pyroptosis of retinal microglia through NLPR3 inflammasome signaling[J]. Arq Bras Oftalmol, 2021, 84(1):67-73.
[87] GUO L, WANG Z H, LI J, et al. MCC950 attenuates inflammation-mediated damage in canines with Staphylococcus pseudintermedius keratitis by inhibiting the NLRP3 inflammasome[J]. Int Immunopharmacol, 2022, 108:108857.
[88] SHI Y H, LV Q, ZHENG M J, et al. NLRP3 inflammasome inhibitor INF39 attenuated NLRP3 assembly in macrophages[J]. Int Immunopharmacol, 2021, 92:107358.
[89] HUANG P R, LIU W J, CHEN J Q, et al. TRIM31 inhibits NLRP3 inflammasome and pyroptosis of retinal pigment epithelial cells through ubiquitination of NLRP3[J]. Cell Biol Int, 2020, 44(11):2213-2219.
[90] YANG K L E, LIU J N, ZHANG X H, et al. H3 relaxin alleviates migration, apoptosis and pyroptosis through P2X7R-mediated nucleotide binding oligomerization domain-like receptor protein 3 inflammasome activation in retinopathy induced by hyperglycemia[J]. Front Pharmacol, 2020, 11:603689.
[91] ZHANG Y, HUANG Y X, GUO L M, et al. Melatonin alleviates pyroptosis of retinal neurons following acute intraocular hypertension[J]. CNS Neurol Disord Drug Targets, 2021, 20(3):285-297.
[92] ZHANG J, DAI Y Q, YANG Y J, et al. Calcitriol alleviates hyperosmotic stress-induced corneal epithelial cell damage via inhibiting the NLRP3-ASC-Caspase-1-GSDMD pyroptosis pathway in dry eye disease[J]. J Inflamm Res, 2021, 14:2955-2962.
[93] YUMNAMCHA T, DEVI T S, SINGH L P. Auranofin mediates mitochondrial dysregulation and inflammatory cell death in human retinal pigment epithelial cells:implications of retinal neurodegenerative diseases[J]. Front Neurosci, 2019, 13:1065.
[94] LU L, ZOU G C, CHEN L, et al. Elevated NLRP3 inflammasome levels correlate with Vitamin D in the vitreous of proliferative diabetic retinopathy[J]. Front Med (Lausanne), 2021, 8:736316.
[95] BAI J, YANG F, WANG R Q, et al. Ghrelin ameliorates diabetic retinal injury: potential therapeutic avenues for diabetic retinopathy[J]. Oxid Med Cell Longev, 2021, 2021:8043299.
[96] SUN H J, JIN X M, Xu J, et al. Baicalin alleviates age-related macular degeneration via miR-223/NLRP3-regulated pyroptosis[J]. Pharmacology, 2020, 105(1-2):28-38.
[97] TAN Y, ZHANG M, PAN Y Z, et al. Suppression of the caspase-1/GSDMD-mediated pyroptotic signaling pathway through dexamethasone alleviates corneal alkali injuries[J]. Exp Eye Res, 2022, 214:108858.
[98] HU J J, LIU X, XIA S Y, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation[J]. Nat Immunol, 2020, 21(7):736-745.
[99] IKEBUKURO T, ARIMA T, KASAMATSU M, et al. Disulfiram ophthalmic solution inhibited macrophage infiltration by suppressing macrophage pseudopodia formation in a rat corneal alkali burn model[J]. Int J Mol Sci, 2023, 24(1):735.
[100] YAN H J, YANG H, WANG L M, et al. Disulfiram inhibits IL-1β secretion and inflammatory cells recruitment in Aspergillus fumigatus keratitis[J]. Int Immunopharmacol, 2022, 102:108401.
[101] TIAN Y, CHEN L, HE M, et al. Repurposing disulfiram to combat acute respiratory distress syndrome with targeted delivery by LET-functionalized nanoplatforms[J]. ACS Appl Mater Interfaces, 2024, 16(10):12244-12262.
[102] HUMPHRIES F, SHMUEL-GALIA L, KETELUT-CARNEIRO N, et al. Succination inactivates gasdermin D and blocks pyroptosis[J]. Science, 2020, 369(6511):1633-1637.
[103] GU L W, LIN J, WANG Q, et al. Dimethyl fumarate ameliorates fungal keratitis by limiting fungal growth and inhibiting pyroptosis[J]. Int Immunopharmacol, 2023, 115:109721.
(編輯 白永平)