





摘要:考慮隨機噪聲對病毒耐藥性變異的傳染病傳播的影響,建立了一類由Lévy噪聲驅動的隨機SIVRS傳染病模型.利用停時理論證明了該模型全局正解的存在唯一性,然后通過構造Lyapunov函數并運用It公式討論了該隨機模型的解在相應確定性模型的無病平衡點和地方病平衡點處的漸近性質.
關鍵詞:Lévy噪聲;隨機SIVRS傳染病模型;Lyapunov函數;It公式
中圖分類號:O175.1;O211.63"" 文獻標志碼:A
Dynamics Analysis of aStochastic SIVRS Infectious Disease Model Driven by Lévy Noise
HUANG Tian-tian,HU hua*
(School of Mathematics and Statistics, Ningxia University, Yinchuan 750021, China)
Abstract:Considering the effect of random noise on the spread of infectious diseases with viral drug resistance variants, a class of stochastic SIVRS infectious disease models driven by Lévy noise is developed.The uniqueness of the existence of a global positive solution to the model is proved using stopping-time theory,then by constructing the Lyapunov function and applying the It formula,discuss the asymptotic properties of the solutions of this stochastic model at the disease-free equilibrium and the endemic equilibrium of the corresponding deterministic model.
Key words:Lévy noise;stochastic SIVRS infectious disease modelling;Lyapunov function;It
0 引言
從古至今,傳染病給人類社會帶來了巨大的災難.為了更好地預防和控制傳染病,學者們通過研究傳染病模型的動力學行為,分析傳染病的傳播過程、影響因素和發展趨勢,以便制定合理的防控措施.
由于個體體質的差異性,在治療過程中可能會出現耐藥性變異,會導致病毒在不同階段下具有不同的感染性[1-3],例如乙型肝炎、結核病等.在對感染者進行藥物治療的過程中,如果患者對現有的藥物產生耐藥性,就會導致藥物治療的作用明顯下降,耐藥性變異會導致患者的情況更糟糕.
研究表明,除了已感染個體具有傳染性之外,耐藥性變異個體也具有傳染性[4-5],這說明病毒在不同時期會有不同的傳染性,因此,研究傳染病耐藥性變異具有重要意義.由于傳染病在傳播過程中會受到許多不可預測環境噪聲的影響[6-7],然而很少有學者考慮到實際應用中環境噪聲和自然界中存在的一些突發現象對于傳染病耐藥性變異傳播的影響.
基于此,本文考慮白噪聲和Lévy噪聲對模型擾動的情況,構建了一個在白噪聲和Lévy噪聲驅動下的隨機SIVRS傳染病模型,模型如下:
dS(t)=(Λ+δR-β1SI-β2SV-
μS)dt+σ1S(t)dB1(t)+
∫YD1(u)S(t)N(dt,du),
dI(t)=[β1SI+β2SV-
(ε+α+μ+φ1)I]dt+σ2I(t)dB2(t)+
∫YD2(u)I(t)N(dt,du),
dV(t)=[εI-(η+μ+φ2)V]dt+
σ3V(t)dB3(t)+∫YD3(u)V(t)N(dt,du),
dR(t)=[αI+ηV-(δ+μ)R]dt+
σ4R(t)dB4(t)+∫YD4(u)R(t)N(dt,du), (1)
其中:S(t),I(t),V(t),R(t)分別是易感者、感染者、變異者、免疫者;Λ是人口常數輸入率;β1是I的感染率;β2是V的感染率;ε是I轉化為V的比率;η是V轉化為R的比率;μ是自然死亡率;φ1是I的因病死亡率;φ2是V的因病死亡率;δ是R失去免疫能力轉變成S的比率,上述常數均為正常數;Bi(t)(i=1,2,3,4)表示定義在域流Fttgt;0的完備概率空間(Ω,F,P)上的布朗運動,且相互獨立;σigt;0(i=1,2,3,4)表示布朗運動Bi(t)(i=1,2,3,4)的強度;Di(t)gt;-1(i=1,2,3,4)表示跳的強度,N(dt,du)表示Poisson隨機測度,N(dt,du)=N(dt,du)-λ(du)dt,N(dt,du)是Ft適應的鞅,λ(du)dt是平穩補償,λ是定義在可測集Y0,上的測度,滿足λ(Y)lt;,∫Yu2∧1λ(du)lt;
1 全局正解的存在唯一性
下面證明模型(1)存在唯一的全局正解,首先對跳擴散系數做以下假設:
對m,Lmgt;0,有
∫YFi(x,u)-Fi(y,u)2λ(du)≤
Lmx-y2,i=1,2,3,4,
ln(1+Di(u))lt;SymboleB@,Di(u)gt;-1,
i=1,2,3,4,u∈Y,
其中
F1(x,u)=D1(u)S(t),
F2(x,u)=D2(u)I(t),
F3(x,u)=D3(u)V(t),
F4(x,u)=D4(u)R(t)x∨y≤m.
定理1 若以上跳擴散系數假設成立,對于任意給定的初始值(S(0),I(0),V(0),R(0))∈R4+,模型(1)存在唯一的正解(S(t),I(t),V(t),R(t)),且對于t≥0,這個解以概率1保持在R4+中.
證明 模型(1)系數滿足Lipschitz條件,由于(S(0),I(0),V(0),R(0))∈R4+是任意給定的初始值,因此存在一個局部解(S(t),I(t),V(t),R(t)),t∈0,τe,其中τe是爆破時間,現在只需要說明τe=SymboleB@,則可以說明該解是全局的.因此,令b0gt;0充分大,使得S(0),I(0),V(0),R(0)在區間1/b0,b0內,對任意整數b≥b0,定義停時:
τb=inft∈0,τe:S(t)1/b,b
或I(t)1/b,b或V(t)1/b,b
或R(t)1/b,b.
令inf φ=SymboleB@,若b→SymboleB@,τb單調遞增,令τSymboleB@=limb→SymboleB@ τb,顯然τSymboleB@≤τe,假設τelt;SymboleB@,則存在常數Tgt;0和ξ∈(0,1),使得P(τSymboleB@≤T)≥ξ,所以,存在一個整數b1≥b0,使得對所有的bgt;b1,都有P(τSymboleB@≤T)≥ξ.定義函數:
Z(S(t),I(t),V(t),R(t))=
S(t)-a-alnS(t)a+
(I(t)-1-lnI(t))+c(V(t)-1-lnV(t))+
(R(t)-1-lnR(t)),
其中a,c均為正的常數.顯然在ugt;0時,u-1-lnu≥0,Z函數具有非負性.根據It公式,有
dZ(S,I,V,R)=
LZ(S,I,V,R)dt+σ1(S-a)dB1(t)+
σ2(I-1)dB2(t)+cσ3(V-1)dB3(t)+
σ4(R-1)dB4(t)+
∫YD1(u)S-aln(1+D1(u))N(dt,du)+
∫YD2(u)I-ln(1+D2(u))N(dt,du)+
c∫YD3(u)V-ln(1+D3(u))N(dt,du)+
∫YD4(u)R-ln(1+D4(u))N(dt,du),
其中
LZ(S,I,V,R)=
Λ+aμ+ε+α+φ1+2μ+
δ+c(η+μ+φ2)+
aβ1+cε-(ε+μ+φ1)I+
aβ2+η-c(η+μ+φ2)V-
μS-μR-aΛS-aδRS-
β1S-β2SVI-cεIV-αIR-ηVR+aσ212+
σ222+cσ232+σ242+
a∫YD1(u)-ln(1+D1(u))λ(du)+
∫YD2(u)-ln(1+D2(u))λ(du)+
c∫YD3(u)-ln(1+D3(u))λ(du)+
∫YD4(u)-ln(1+D4(u))λ(du)≤
Λ+aμ+ε+α+φ1+2μ+δ+
c(η+μ+φ2)+aβ1+cε-ε+μ+φ1I+
aβ2+η-cη+μ+φ2V+aσ212+σ222+
cσ232+σ242+a∫YD1(u)-ln1+D1(u)
λ(du)+∫YD2(u)-ln1+D2(u)λ(du)+
c∫YD3(u)-ln1+D3(u)λ(du)+
∫YD4(u)-ln1+D4(u)λ(du).
令
aβ1+cε-ε+μ+φ1=0,
aβ2+η-cη+μ+φ2=0,
可得
a=μ+φ1η+μ+φ2+εμ+φ2β1η+μ+φ2+εβ2,
c=ε+μ+φ1+aβ1β1η+μ+φ2+εβ2.
令
K1=
maxa∫YD1(u)-ln1+D1(u)v(du),
∫YD2(u)-ln1+D2(u)v(du),
c∫YD3(u)-ln1+D3(u)λ(du),
∫YD4(u)-ln1+D4(u)λ(du),
LZ≤Λ+aμ+ε+α+φ1+2μ+
δ+cη+μ+φ2+aσ212+
σ222+cσ232+σ242+4K1:=K,
對上式兩端從0到τb∧T積分并取期望,有
EZSτb∧T,Iτb∧T,
Vτb∧T,Rτb∧T≤
VS(0),I(0),V(0),R(0)+KEτb∧T≤
VS(0),I(0),V(0),R(0)+KT.
集合Ωb=τb∧T,對于PΩb≥ξ,ζ∈Ωb,Sτb,ζ ,Iτb,ζ,Vτb,ζ,Rτb,ζ中至少有一個等于b或1/b,
若Sτb,ζ=b或1/b,則有
VSτb∧T,Iτb∧T,
Vτb∧T,Rτb∧T≥
b-a-alnba∧1b-a-aln1ba=
aba-1-lnba∧1ba-1-ln1ba,
若Iτb,ζ或Rτb,ζ等于b或1/b,則有
VSτb∧T,Iτb∧T,
Vτb∧T,Rτb∧T≥
b-1-lnb∧1b-1-ln1b,
若Vτb,ζ=b或1/b,則有
VSτb∧T,Iτb∧T,
Vτb∧T,Rτb∧T≥
cb-1-lnb∧1b-1-ln1b.
于是
VSτb∧T,Iτb∧T,
Vτb∧T,Rτb∧T≥
b-1-lnb∧1b-1-ln1b∧
cb-1-lnb∧1b-1-ln1b ∧
aba-1-lnba∧1ba-1-ln1ba,
所以
ZS(0),I(0),V(0),R(0)+KT≥
EχΩbZSτb∧ζ,
Iτb∧ζ,Vτb∧ζ,Rτb∧ζ≥
ξb-1-lnb∧1b-1-ln1b∧
cb-1-lnb∧1b-1-ln1b∧
aba-1-lnba∧1ba-1-ln1ba,
χΩb是Ωb的示性函數,若b→SymboleB@,存在矛盾,
SymboleB@gt;ZS(0),I(0),V(0),R(0)+KT=SymboleB@.
必然會有τe=SymboleB@,因此(S(t),I(t),V(t),R(t))在有限時間內不會爆破,模型(1)存在唯一的全局正解,定理得證.
2 無病平衡點附近的漸近行為
定理2 設S(t),I(t),V(t),R(t)是模型(1)的解,若
Rl0=Λβ1δ+μ+φ2+εβ2μη+μ+φ2ε+α+μ+φ1lt;1,
且滿足以下條件:
2μgt;2σ12+δ+3∫YD12(u)λ(du),
ε+α+2μ+2φ1gt;σ22+δ+
3∫YD22(u)λ(du),
η+2μ+2φ2gt;σ32+ε+∫YD32(u)λ(du),
2μgt;σ42+α+η+∫YD42(u)λ(du),
則有
limsupt→SymboleB@1tE∫t0S(r)-Λμ2+
I2(r)+V2(r)+R2(r)dr≤
1M1Λμ22σ12+3∫YD12(u)λ(du),
其中
M1=min2μ-2σ21-δ-
3∫YD12(u)λ(du),
ε+α+2μ+2φ1-σ22-δ-
3∫YD22(u)λ(du),
η+2μ+2φ2-σ32-ε-
∫YD32(u)λ(du),2μ-σ42-α-
η-∫YD42(u)λ(du).
證明 定義函數ZS,I,V,R=S-Λμ+I2+V2+R2,則根據It公式可得
dZS,I,V,R=LZS,I,V,R+
2σ1SS-Λμ+IdB1(t)+
2σ2IS-Λμ+IdB2(t)+
2σ3VdB3(t)+2σ4RdB4(t)+
∫YD1(u)S+D2(u)I2N(dt,du)+
∫Y2S-Λμ+ID1(u)S+D2(u)I
N(dt,du)+∫YD3(u)V2N(dt,du)+
∫Y2D3(u)V2N(dt,du)+
∫YD4(u)R2N(dt,du)+
∫Y2D4(u)R2N(dt,du),
其中
LZS,I,V,R=
-2μS-Λμ2+2δS-ΛμR-
2S-Λμε+α+μ+φ1I-
2μS-ΛμI+2δRI-2ε+α+μ+φ1I2+
2εIV-2η+μ+φ2V2+2αIR+2ηVR-
2δ+μR2+σ21S2+σ22I2+σ23V2+σ24R2+
∫YD1(u)S+D2(u)I2+
D23(u)V2+D24(u)R2λ(du) ≤
-2μ-σ21S-Λμ2-
2ε+α+μ+φ1-σ22I2-
2η+μ+φ2-σ23V2-
2δ+μ-σ24R2+
2εIV+2α+δRI+2ηVR+
2σ21ΛμS-Λμ+
σ21Λμ2+2δS-ΛμR+
S-Λμ2∫YD21(u)λ(du)+
I2∫YD22(u)λ(du)+
V2∫YD23(u)λ(du)+
R2∫YD24(u)λ(du)+
2ΛμS-Λμ∫YD21(u)λ(du)+
2ΛμI∫YD1(u)D2(u)λ(du)+
2S-ΛμI∫YD1(u)D2(u)λ(du)+
Λμ2∫YD12(u)λ(du),
根據不等式2ab≤a2+b2,可得
LZ≤-2μ-σ21S-Λμ2-
2ε+α+μ+φ1-σ22I2-
2η+μ+φ2-σ23V2-
2δ+μ-σ24R2+ε+δ+αI2+
ε+ηV2+α+δ+ηR2+
σ21Λμ2+σ21S-Λμ2+
σ21Λμ2+δS-Λμ2+δR2+
S-Λμ2∫YD21(u)λ(du)+
I2∫YD22(u)λ(du)+V2∫YD23(u)λ(du)+
R2∫YD24(u)λ(du)+Λμ2∫YD21(u)λ(du)+
S-Λμ2∫YD21(u)λ(du) +
Λμ2∫YD21(u)λ(du)+
I2∫YD22(u)λ(du)+S-Λμ2∫YD21(u)λ(du) +
I2∫YD22(u)λ(du)+Λμ2∫YD21(u)λ(du),
所以
LZ≤-S-Λμ2
2μ-2σ21-δ-3∫YD21(u)λ(du)-
I2ε+α+2μ+2φ1-σ22-δ-
3∫YD22(u)λ(du)-
V2η+2μ+2φ2-σ23-ε-∫YD23(u)λ(du)-
R22μ-σ24-α-η-∫YD24(u)λ(du)+
Λμ22σ12+3∫YD21(u)λ(du),
將上式兩邊從0到t同時積分并取期望,有
0≤EZS,I,V,R=
EZS(0),I(0),V(0),R(0)+
E∫t0LZS(r),I(r),V(r),R(r)dr,
可得
E∫t02μ-2σ21-δ-3∫YD21(u)λ(du)
S-Λμ2+ε+α+2μ+2φ1-σ22-δ-
3∫YD22(u)λ(du)I2+
η+2μ+2φ2-σ23-ε-∫YD23(u)λ(du)V2+
2μ-σ24-α-η-∫YD24(u)λ(du)R2
≤EZS(0),I(0),V(0),R(0)+
tΛμ22σ21+3∫YD21(u)λ(du),
所以
lim supt→SymboleB@1tE∫t0S(r)-Λμ2+
I2(r)+V2(r)+R2(r)dr≤
1M1Λμ22σ12+3∫YD12(u)λ(du),
M1=min2μ-2σ21-δ-
3∫YD12(u)λ(du),ε+α+
2μ+2φ1-σ22-δ-
3∫YD22(u)λ(du),
η+2μ+2φ2-σ32-ε-
∫YD32(u)λ(du),
2μ-σ42-α-η-∫YD42(u)λ(du).
注1 模型(1)的解在無病平衡點E0Λμ,0,0,0附近振動,隨機噪聲強度σi(i=1,2,3,4)和Di(i=1,2,3,4)一起影響解的振動情況:噪聲強度越弱,振動越弱;隨機噪聲強度σi和Di均趨于零,模型(1)的解越趨近于無病平衡點,疾病將會消失.
3 地方病平衡點附近的漸近行為
定理3 設(S(t),I(t),V(t),R(t))是模型(1)的解,
Rl0=Λβ1(δ+μ+φ2)+εβ2μ(η+μ+φ2)(ε+α+μ+φ1)gt;1,
且滿足以下條件
2μgt;σ12+2∫YD12(u)λ(du),
2(ε+α+μ+φ1)gt;σ22+2∫YD22(u)λ(du),
2(η+μ+φ2)gt;σ32+∫YD32(u)λ(du),
2(δ+μ)gt;σ42+∫YD42(u)λ(du),
則
limsupt→SymboleB@1tE∫t0S-2μM2S2+
I-2ε+α+μ+φ1M3I2+
V-2η+μ+φ2M4V2+
R-2δ+μM5R2dr≤
2GminM2,M3,M4,M5.
其中
M2=2μ-σ12-2∫YD12(u)λ(du),
M3=
2ε+α+μ+φ1-σ22-2∫YD22(u)λ(du),
M4=2η+μ+φ2-σ32-∫YD32(u)λ(du),
M5=2δ+μ-σ42-∫YD42(u)λ(du),
G=μS2+ε+α+μ+φ1I2+
η+μ+φ2V2+δ+μR2.
證明 定義函數Z1,Z2,Z3,
Z1S,I=12S-S+I-I2,
Z2V=12V-V2,
Z3(r)=12R-R2.
根據It公式有
LZ1S,I=S-S+I-I
Λ+δR-μS-ε+α+μ+φ1I+
12σ21S2+σ22I2+
12∫YD1(u)S+D2(u)I2λ(du),
LZ2V=
V-VεI-η+μ+φ2I+
12σ23V2+12∫YD3(u)V2λ(du),
LZ3(r)=
R-RαI+ηV-δ+μR+
12σ24R2+12∫YD4(u)R2λ(du),
又由于地方病平衡點ES,I,V,R滿足
Λ+δR=β1SI+β2SV+μS,
β1SI+β2SV=ε+α+μ+φ1I,
εI=η+μ+φ2V,
αI+ηV=δ+μR,
因此
LZ1≤-μS-S2-
ε+α+μ+φ1I-I2+
12σ21S2+12σ22I2+
12∫YD1(u)S+D2(u)I2λ(du)≤
-μS-S2-
ε+α+μ+φ1I-I2+
12σ21S2+12σ22I2+∫YD21(u)S2λ(du)+
∫YD22(u)I2λ(du),
LZ2=
V-V-η+μ+φ2V-V+
12σ23V2+12∫YD23(u)V2λ(du),
LZ3=
R-R-δ+μR-R+
12σ24R2+12∫YD24(u)R2λ(du).
令Z=Z1+Z2+Z3,則LZ=LZ1+LZ2+LZ3,
所以
LZ≤-μS-S2-
ε+α+μ+φ1I-I2-
η+μ+φ2V-V2-
δ+μR-R2+12σ21S2+
12σ22I2+12σ23V2+12σ24R2+
∫YD21(u)S2λ(du)+∫YD22(u)I2λ(du)+
∫YD23(u)V2λ(du)+∫YD24(u)R2λ(du)=
-M22S-2μM2S2-
M32I-2ε+α+μ+φ1M3I2-
M42V-2η+μ+φ2M4V2-
M52R-2δ+μM5R2+G,
其中
M2=2μ-σ21-2∫YD21(u)λ(du),
M3=2ε+α+μ+φ1-
σ22-2∫YD22(u)λ(du),
M4=2η+μ+φ2-σ23-∫YD23(u)λ(du),
M5=2δ+μ-σ24-∫YD24(u)λ(du),
G=μS2+ε+α+μ+φ1I2+
η+μ+φ2V2+δ+μR2.
對上式兩邊從0到t同時積分并取期望,有
0≤EZS(t),I(t),V(t),R(t)=
ZS(0),I(0),V(0),R(0)+
E∫t0LZS(r),I(r),V(r),R(r)dr,
所以可得
limsupt→SymboleB@1tE∫t0S-2μM2S2+
I-2ε+α+μ+φ1M3I2+
V-2η+μ+φ2M4V2+
R-2δ+μM5R2dr≤
2G/(minM2,M3,M4,M5).
注2 由定理3可知,受到隨機噪聲影響,模型(1)的解在地方病平衡點E=(S,I,V,R)附近振動,當隨機噪聲強度σi(i=1,2,3,4)和Di(i=1,2,3,4)趨于零時,可以得到模型(1)的解越趨近于對應的確定性模型的地方病平衡點,疾病將會持續存在.
4 結語
本文考慮到環境噪聲和自然界中一些突發現象對于耐藥性變異傳染病傳播的影響,建立了一類在白噪聲和Lévy噪聲驅動下的隨機SIVRS傳染病模型,并討論了隨機模型(1)的動力學行為,得到:當Rl0lt;1并滿足所給定條件時,模型(1)的解在相應確定性模型的無病平衡點附近振動,且隨著噪聲強度σi(i=1,2,3,4)和Di(i=1,2,3,4)的減小,模型(1)的解振動越弱,即說明模型(1)的解越接近無病平衡點,傳染病將滅絕;當Rl0gt;1并滿足所給定條件時,模型(1)的解在相應確定性模型的地方病平衡點附近振動,且隨著噪聲強度σi和Di的減小,模型(1)的解振動越弱,即說明模型(1)的解越接近地方病平衡點,傳染病將持續存在.
參考文獻:
[1] WILSON A,LIVERMORE D,OTTER J,et al.Prevention and control of multi-drug-resistant Gram-negative bacteria:recommendations from a Joint Working Party[J].Journal of Hospital Infection,2016,92(S1):S1-S44.
[2] SHEN C,CHANG Y,AGNISWAMY J,et al.Conformational variation of an extreme drug resistant mutant of HIV protease[J].Journal of Molecular Gra-phics and Modelling,2015,62:87-96.
[3] XU D F,XU X Y,XIE Y F,et al.Optimal control of an SIVRS epidemic spreading model with virus variation based on complex networks[J].Communications in Nonlinear Science and Numerical Simulation,2017,48:200-210.
[4] HASTINGS I M,D’ALESS ANDR O V.Modelling a predictable disaster:the rise and spread of drug-resistantmalaria[J].Parasitology today (Personal ed.),2000,16(8):340-347.
[5] DIN E T A M, EI MARAGHY A A,HABDEL AY A H.Adverse reactions among patients being treated for multi-drug resistant tuberculosis at Abbassia Chest Hospital[J].Egyptian Journal of Chest Diseases and Tuberculosis,2015,64(4):939-952.
[6] EASLICK T,SUN W.A unified stochastic SIR model driven by Lévy noise with time-dependency[J].Advances in Continuous and Discrete Models,2024,2024(1):1-26.
[7] YANG C,CAI W Z.Dynamical analysis of a stochastic SIRS epidemic model with saturating contact rate.[J].Mathematical biosciences and engineering :MBE,2020,17(5):5925-5943.
[責任編輯:趙慧霞]