【中圖分類號】G623.5 【文獻標識碼】A【文章編號】1002-3275(2025)04-35-03
從孔子“不憤不啟,不悱不發”的啟發式教學,到陶行知“發明千千萬,起點是一問”的實踐主張,提問始終是啟迪思維的密鑰。小學數學作為培養學生邏輯推理能力的基礎學科,更需要通過有效提問架起學生直觀經驗與抽象思維之間的橋梁。
一、提問的理論基礎
第一,提問作為課堂教學的核心要素,其理論基礎深深植根于現代教育理念的沃土之中。建構主義學習理論認為,知識的獲得不是簡單的信息傳遞,而是學習者主動建構的過程。在小學數學課堂上,當教師引導學生提出問題時,實質上是在搭建認知腳手架,推動學生將已有經驗與新知識建立聯結。例如教學“分數的基本性質”時,教師如果直接將“分子分母同乘同除大小不變”的結論告知學生,學生往往只能機械記憶。而如果通過展示
與
的實物模型,讓學生觀察比較后自發產生“分數形式不同但大小相等”的疑問,那么這種基于實物操作的提問過程,正是學生主動建構數學概念的生動體現。這種建構不是知識的簡單疊加,而是通過問題牽引完成的意義重構。正如維果茨基所言,教學應走在發展的前面,而優質提問正是架設在學生現實發展水平與潛在發展水平之間的橋梁。
第二,問題解決理論揭示了提問的價值。例如波利亞提出的“怎樣解題”四步法,本質上構建了問題驅動的學習循環。在“雞兔同籠”問題教學中,當學生嘗試用畫圖法、列表法、假設法解決問題時,教師通過追問“這些方法有什么共同點”,引導學生發現不同解法背后隱藏的數學模型思想。這種教學實踐印證了問題解決理論的精髓一一提問不僅是教學的起點,而且是貫穿整個認知過程的思維線索。在圖形與幾何領域,提問的催化作用尤為明顯。例如探究“圓的周長”時,從最初的“如何測量曲線長度”到“周長與直徑的關系”,再到“圓周率的本質”,問題鏈的設計讓學生親歷人類探索數學奧秘的思維過程,這樣的教學過程正是問題解決理論在課堂中的立體呈現。
第三,布魯納的發現學習理論為提問策略的設計提供了方法論指導。例如在“三角形內角和”教學中,教師通過分割三角形制造認知沖突,學生提出的“分割后的小三角形內角和是否改變”這一問題,恰是發現學習理論倡導的“引導一發現”模式的典型體現。又如在“乘加混合運算”教學中,學生列出 4×3+2 與2+4×3 的不同算式后,教師追問“為什么運算順序不影響結果”,促使學生發現運算律的本質。可見,有意義的提問就像思維的火種,既能點燃學生的探究熱情,又能照亮他們的認知路徑,使學生在解決問題的過程中自然達成對數學本質的理解。
二、提問的教學價值
首先,提問的教學價值體現在促進學生知識結構化方面。例如當學生在“大數的認識”單元中自主提出“如何排列數字得到最大值”“零的位置對數值有什么影響”等問題時,他們實際上是在建立數位、計數單位等核心概念之間的聯結。這種通過提問形成的知識網絡,遠比被動接受教師講解更為牢固。又如在“班級生日密碼”活動中,學生提出的“二月出生人數為何最少”這一問題,不僅串聯起月份天數、數據收集等多維度知識,而且架起數學與生活聯系的橋梁。這種跨領域的提問,有效聯結知識,幫助學生在真實情境中形成完整的認知體系。
其次,培養學生的高階思維能力是提問的核心價值所在。例如當教師出示非常規平行四邊形引發面積計算爭議時,學生通過質疑“公式是否可靠”“高的本質是什么”等,逐步發展批判性思維。又如在“分數
(20除法”教學中,當學生通過分蛋糕操作提出“分 塊與分
塊的本質區別是什么”時,展現出的是抽象建模能力,這種思維層級的提升是有效提問的核心價值所在。
再次,提問對數學核心素養的培育具有重要作用。《義務教育數學課程標準(2022年版)》提出的“三會”素養目標,在優質提問中得以具象化實現。例如在“運算律”教學中,學生通過觀察 3+5 與 5+3 的實物排列提出問題,這正是“用數學的眼光觀察現實世界”的生動實踐;在探究“多邊形的面積”時,追問不同轉化方法的共通點,體現了“用數學的思維思考現實世界”的能力發展;當學生用統計圖表分析班級內同學出生月份規律并完成研究報告時,展現的正是“用數學的語言表達現實世界”的素養。這些教學實例共同證明,提問是培育學生核心素養的有效手段。
最后,從教學實踐層面看,提問策略的優化能夠改善課堂生態。例如在“時、分、秒”教學中,通過創設“8:60”的錯誤情境,學生提問的積極性顯著提升,課堂參與率大幅提高。持續的問題導向教學有助于使學生逐步養成“觀察現象一追問本質一遷移應用的思維習慣。這體現了當課堂提問從教師主導轉向師生共建時,教學就真正實現了從知識傳遞向思維生長的范式轉型。
在課堂觀察實踐中發現,當前課堂提問仍存在著重形式輕思維、重預設輕生成等典型問題,亟須構建系統化的改進機制。具體而言,筆者在教學觀察實踐中發現,一些教師的提問多停留在知識記憶層面,如“如何計算”“結果是什么”,低階問題占比過高會導致學生思維停留在淺層加工層面。更值得警惕的是,有些教師課后反思往往只關注學生是否答對,而忽視了對問題設計合理性和思維引導有效性的深度剖析。這種淺表化的反思模式,使得課堂問答難以實現對學生思維的真實培養。
如何突破這些瓶頸,讓提問真正成為推動學生數學思維發展的引擎?筆者結合多年教學實踐,探索出以下策略。
三、提升提問有效性的策略
(一)提問扎根于真實情境
建構主義理論啟示我們,有效的提問應融入真實的情境和學生已有知識,讓學生在解決問題的過程中自然建構知識。[1]例如在教學“分數加減法”時,教師如果直接講解“分母不變”的規則,學生往往難以理解其本質,而通過設計“分蛋糕”的實物操作情境,引導學生提出“為什么切的份數要相同”“不同大小的份怎么相加”等問題,就能在具象操作中滲透分數單位的核心概念。這種情境化的提問設計,既遵循了學生從具體到抽象的認知規律,又使數學概念在真實問題解決中自然呈現。
(二)運用分層提問策略突破教學重難點
根據布魯姆認知目標分類,可將問題分為“知道一領會一應用一分析一綜合一評價”六個層級,教師可根據教學內容選擇相應層級形成階梯式問題鏈。例如在“圓的面積”教學中,教師先提出記憶性(知道)問題“圓的周長公式是什么”,接著追問理解性(領會)問題“圓能否轉化為我們已知的圖形”,進而提出應用性(應用)問題“如何計算分割后的圖形面積”,最后引導創造性思考(評價)“將圓無限細分后會變成什么圖形”。這種層層遞進的問題設計,使學生在解決基礎問題的過程中自然觸及極限思想。
(三)以動態生成性提問激活課堂生命力
教師需要敏銳捕捉課堂中的生成資源,將學生的疑問轉化為一個個教學契機。例如在“可能性”教學中,當學生在摸球游戲中連續摸出紅球后斷言:“袋子里全是紅球。”這時教師沒有直接否定,而是追問:“怎樣才能確定這個結論是正確的?如果繼續摸會出現什么情況?”并且引導學生設計實驗方案收集數據。這種基于真實困惑的提問,使課堂從預設走向生成,學生不僅理解了概率的統計意義,而且在這個過程中培養了科學探究精神。
(四)創新運用提問工具提升教學效能
可視化工具(如圖形計數器、思維導圖等)可以將學生的抽象思維過程顯性化。例如在“大數的認識”教學中,教師利用數字卡片組織拼擺活動,并提問:“怎樣排列能使數值最大?零的位置如何影響讀數?”教師可引入智能反饋系統實現精準教學,例如在班級中使用課堂應答器,實時獲取全班問題分布數據,再針對性地調整提問策略。提問工具的創新運用,有利于使提問從教師的單向輸出轉變為師生的雙向互動。
(五)構建系統化的提問路徑
構建系統化的提問路徑有助于提升提問的效用。例如在“時、分、秒”單元教學中,教師分三個階段推進教學。啟動階段通過“列車時刻表陷阱”激發學生認知沖突,探究階段圍繞“時間進制轉換”設計問題鏈,遷移階段創設“設計校園作息表”的實踐任務。這種“激趣一探究一應用”的提問實施路徑,使學生能自主發現時間單位的換算規律。又如在“運算律”教學中,教師采用“觀察猜想一驗證歸納一拓展應用”的漸進式提問路徑,引導學生通過對比實物排列,自主提出加法交換律,這種發現過程比直接講授記憶效果更好。
(六)建立提問效果評估的多元反饋機制
教師在提問時需要關注學生的思維過程。例如筆者在教學“多邊形的面積”單元后,通過分析學生提出的“為什么不同轉化方法結果相同”“如何證明公式的普適性”等問題,發現學生對轉化思想理解程度較高。此外,還可以建立“提問成長檔案”,持續記錄學生從“答案是什么”到“為什么這樣”的提問演變,這種過程性評價為教學改進提供了精準依據。
(七)以教師專業成長驅動提問教學落地
教師是課堂提問的直接實施者,只有教師專業得以成長,提問教學才能有效實施。學校可基于校本教研平臺建立“提問研究工作坊”,為教師共同研磨典型課例提供支持,提升教師提問的精準性。相關教育部門和學校要為教師提供培訓學習的機會,讓教師在專題培訓中提升設問、提問、應答的能力。另外,教師要注重自我反思,形成定期反思的習慣。
(八)推進家校協同鞏固提問教學成效
家庭教育影響學生的習慣形成,只有家校協同推進,才能鞏固提問教學的成效。學校可組織開展“家庭數學日”活動,引導家長在家庭教育中培養學生的提問意識。例如教師可引導家長用“今天你提出了什么好問題”替代傳統的知識詢問。筆者任教的班級實施兩個月的“家庭提問觀察日志”活動后,家長日志匯總結果顯示,學生日均自主提問量從1.2個增至3.5個,“為什么類”問題占比提升 28% 。
四、結語
筆者在教學實踐中發現,“以問引學”的課堂重構帶來了學生的三重蛻變:其一,學習視角的翻轉,學生從被動應答轉向主動發問,課堂觀察記錄顯示,學生提問涉及數學本質的比例有所提升;其二,思維層級的躍升,在“乘加混合運算”“組合圖形面積”等課例中,學生逐步養成了“觀察現象一追問本質一遷移應用”的思維習慣;其三,素養培育的落地,當學生用“分數變形法則”解釋等值分數時,用“可能性階梯”分析生活決策時,量感、推理意識等核心素養已悄然生長。在實踐反思總結中,筆者發現了提問教學新的生長點:如何平衡問題生成的開放性與教學目標的導向性?怎樣在班級授課制下實現個性化追問?這些都是未來需探究解決的問題。
總之,系統化的課堂提問策略能顯著提升小學數學教學質量,從而培養學生的核心素養。未來需深化智能技術的應用,開發符合不同階段學生認知的提問評價工具,構建“低年級具象提問一高年級抽象思辨”的提問進階體系。教育革新永無止境,當提問成為師生思維對話的橋梁時,數學課堂便能從知識傳授升華為素養培育的沃土。期待更多教師在“問”與“思”的碰撞中,助力學生綻放智慧光芒,為終身學習奠基。
【參考文獻】
[1]傅贏芳,顏淑蘭.數學課堂教學視域下問題提出的情境設計:以“百分數的應用(一)”為例[J].小學教學(數學版),2019(4):21-24.