[摘要] 糖尿病是一種全球性慢性疾病,發病率逐年升高;其中2型糖尿病患者顯著多于1型糖尿病。2型糖尿病患者普遍存在腸道菌群失衡,進而導致患者出現胰島素抵抗和代謝紊亂。研究發現益生菌有助于血糖控制、減輕炎癥和氧化應激,并對糖尿病相關并發癥表現出潛在療效。本文闡述益生菌、益生元和合生元對糖尿病及其并發癥的應用進展。
[關鍵詞] 糖尿病;糖尿病并發癥;益生菌;腸道菌群失衡;代謝調節
[中圖分類號] R587.1" """"[文獻標識碼] A """""[DOI] 10.3969/j.issn.1673-9701.2025.22.028
糖尿病(diabetes mellitus,DM)是一組代謝性疾病。作為能量來源,葡萄糖未得到充分利用,且由于糖異生和糖原分解不當而過量產生,故而糖尿病患者表現出高血糖特征[1]。DM分為1型糖尿病(type 1 diabetes mellitus,T1DM)和2型糖尿病(type 2 diabetes mellitus,T2DM)。T2DM是DM的常見類型,90%以上的DM患者為T2DM[2]。研究發現T2DM患者普遍存在腸道菌群失衡,引發慢性低度炎癥,糖代謝異常,引發腸源性內毒素血癥[3]。攝入益生菌可改善DM患者的腸道菌群紊亂和胰島素抵抗(insulin resistance,IR),調節其代謝并抑制腸道炎癥。本文闡述益生菌、益生元和合生元對DM及其并發癥的應用進展。
1 "益生菌
益生菌是“活的微生物”。當攝入足夠量益生菌時,對宿主健康有益。常用益生菌微生物包括鼠李糖乳桿菌、羅伊乳桿菌、雙歧桿菌等。這些益生菌可單獨或組合添加到食品中,特別是發酵乳制品中。
2 "益生元
益生元是一種不被宿主消化吸收的食物成分,其為宿主帶來的健康益處與微生物群調節相關。益生元是一組不同的碳水化合物成分,人們對其來源、發酵特性及其產生健康效果所需劑量知之甚少。大多數益生元是纖維,通過選擇性刺激結腸中某些微生物屬的生長和/或活性,對宿主健康產生有益影響[4]。良好的益生元具有以下特點:①可抵抗胃酸、膽鹽和腸道中其他水解酶的作用;②不被上消化道吸收;③易于被有益腸道微生物群發酵[5]。
3 "合生元
益生菌和益生元的協同組合被稱為合生元。與單獨益生菌或益生元相比,合生元效果更強[6]。合生元可提高對應益生菌在通過上消化道運輸過程中的存活率,使其更有效地植入結腸并幫助對應益生菌和腸道細菌產生生長刺激作用,維持腸道穩態[7]。
4 "腸道菌群與DM的相關性
腸道屏障自外(管腔)而內(固有層)分別由含抗菌肽和免疫球蛋白A的黏液層、含腸上皮細胞和腸上皮干細胞的單細胞層、富含白細胞的固有層組成[8]。作為腸道眾多微生物的代謝產物,丁酸鹽有加固單細胞層連接區、維持腸道穩態的作用,同時還兼有促進葡聚糖硫酸鈉損傷后杯狀細胞的產生和黏液恢復等功能[9]。丁酸鹽是腸道微生物群產生的腸道代謝物之一,其可通過多種機制改善T2DM進展,包括維持腸上皮屏障完整性、促進肝糖原代謝、調節線粒體功能[10]。作為短鏈脂肪酸(short chain fatty acid,SCFA)受體之一,G蛋白偶聯受體(G protein-coupled receptor,GPR)43主要在白色脂肪細胞、胰島α細胞和β細胞、腸內分泌細胞及免疫細胞中表達[11-12]。丁酸鹽可通過激活游離脂肪酸受體2(free fatty acid receptor 2,FFAR2)抑制組蛋白脫乙酰酶(histone deacetylase,HDAC)表達,對炎癥反應產生抑制作用[13]。當丁酸鹽減少時,T2DM患者腸道通透性增加,炎癥抑制作用減弱[14]。腸道通透性調節劑zonulin通過蛋白激酶C(protein kinase C,PKC)依賴性肌動蛋白微絲的重排和ZO-1結構的惡化調節細胞旁通透性[15]。異常細菌定植后,DM患者zonulin水平升高,導致腸道細胞旁通透性增加。在腸道通透性增加的情況下,細菌脂多糖(lipopolysaccharide,LPS)更易入血,導致代謝性內毒素血癥[16]。腸道菌群紊亂可導致腸道抗炎反應能力下降,LPS水平升高,低水平SCFA可減少GPR41和GPR43的激活,引起腸道炎癥,進而誘導DM和IR的發生[17]。
5 "益生菌與DM的相關性
益生菌具有恢復腸道微生物群平衡且抗肥胖的功能,主要歸因于益生菌可產生乙酸、丙酸、丁酸等SCFA。SCFA通過刺激脂肪細胞中的GPR43改變代謝率,并通過刺激腸道中的GPR43促進腸道運動和腸道激素的分泌。這一作用可增加能量消耗并改善葡萄糖耐量,提高能量利用率[18]。在抗DM方面,SCFA可通過刺激FFAR2誘導胰高血糖素樣肽-1(glucagon-like peptide-1,GLP-1)產生,高水平GLP-1可促進胰島素生成、調節胰島β細胞增殖、改善IR和抑制炎癥[16]。在改善代謝方面,益生元和/或益生菌有益于改善代謝綜合征患者的體質量指數、腹圍、IR和炎癥等代謝參數。微生物菌群的質量還可影響代謝綜合征和T2DM特有的病理生理過程[19]。
6 "益生菌、益生元和合生元對DM及其并發癥的治療
目前,DM及其并發癥多采用藥物治療和飲食生活方式調節相結合的治療模式。腸道菌群在DM及其并發癥的發生發展中發揮有益作用,益生菌有益于促進機體代謝和調節血糖。
6.1" 益生菌對T1DM患者的治療
Moravejolahkami等[20]通過評估5項隨機對照試驗(randomized controlled trial,RCT)支持T1DM患者益生菌給藥的安全性和有效性。鑒于RCT數量有限,作者建議在未來研究中增加單菌株益生菌、益生元和合生元的療效評估。
6.2" 益生菌、合生元對T2DM患者的治療
關于益生菌治療T2DM患者的相關研究中,Li等[21]研究發現益生菌補充劑可顯著降低T2DM患者的血糖控制參數。Naseri等[22]研究顯示攝入益生菌或合生元可降低C反應蛋白(C-reactive protein,CRP)、腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)和丙二醛水平,提高總抗氧化能力、谷胱甘肽和一氧化氮水平,由此降低DM前期和T2DM患者的心血管疾病風險。至于通過合生元治療T2DM患者,Horvath等[23]研究發現在持續6個月的治療干預中,合生元不僅能改善DM患者的葡萄糖代謝,也可改善腸道通透性和生活質量等次要指標。Kassaian等[24]給予T2DM前期患者益生菌和合生元補充劑,與安慰劑相比,補充益生菌和合生元患者的糖化血紅蛋白水平顯著降低,平均空腹血糖水平亦降低。
6.3nbsp; 益生菌對T2DM相關牙周炎的治療
T2DM不僅是牙周炎的獨立危險因素,其還與牙周炎相互作用促進疾病演變和進展[25]。牙周炎可引起循環白細胞介素(interleukin,IL)-6、TNF-α和CRP水平升高,導致全身炎癥增加,進一步加重T2DM患者的IR[26]。DM也可增加牙周炎的發病率。可考慮使用益生菌干預口腔菌群失調所致T2DM和牙周炎,緩解DM相關牙周炎患者的病情。
在眾多益生菌中,已有不少研究提出乳酸菌改善T2DM相關牙周炎的一種潛在機制是乳酸菌通過多不飽和脂肪酸途徑產生親酮酸,親酮酸可抑制IL-6、IL-1β和TNF-α,并抑制輔助性T細胞17的分泌活性,進而抑制慢性牙周炎進展,減輕炎癥并調節免疫力[27]。Zhang等[28]研究發現益生菌丁酸梭菌MIYAIRI 588可減輕牙周炎DM小鼠的口腔骨破壞,其保護機制源于其可調節腸穩態并通過升高血清中4-羥基苯甲醇水平減輕氧化損傷。
6.4" 益生菌、合生元對妊娠糖尿病的治療
適當補充益生菌有益于孕婦避免發生妊娠糖尿病(gestational diabetes mellitus,GDM)。Wickens等[29]研究推測鼠李糖乳桿菌HN001補充劑可改變腸道微生物群的組成和功能,有利于改善宿主的胰島素敏感度,降低炎癥水平。Mu等[30]研究證實益生菌/合生元可控制GDM患者的葡萄糖和脂質代謝,顯著改善患者的空腹血糖、空腹血清胰島素、穩態模型評估的胰島素抵抗指數、總膽固醇水平。但Davidson等[31]研究也提出益生菌給藥可增加先兆子癇的風險。GDM患者在懷孕期間需謹慎使用益生菌。
6.5" 益生菌對糖尿病腎病的治療
研究表明腸道菌群失調引起的LPS水平上升和SCFA水平下降等變化可進一步引發IR和腸道炎癥,這些改變參與糖尿病腎病的進展[32-34]。益生菌逐漸被用于糖尿病腎病的治療。益生菌可通過提高SCFA水平對急性腎損傷產生抗炎作用,并緩解慢性腎間質纖維化[35]。益生菌也被證實可通過調節腸道微生物結構建立腸–腎軸,改善腸道菌群失調,進一步減少尿毒癥毒素,提高SCFA水平,增強腸道屏障完整性,緩解慢性腎病[36]。Dai等[37]通過Meta分析發現給予益生菌對糖尿病腎病患者代謝指標產生有益影響,包括腎功能、葡萄糖穩態、脂質代謝、炎癥和氧化應激,延緩糖尿病腎病患者腎功能損傷的進展。
6.6" 益生菌對糖尿病認知障礙的治療
研究發現T2DM患者輕度認知障礙的綜合患病率較高[38]。與非DM患者相比,T2DM患者發生所有類型癡呆的風險系數均較高,其中也包括阿爾茨海默病[39]。早期預防和改善糖尿病認知障礙的臨床意義較大。Shen等[40]研究發現腸–腦軸是一個復雜網絡,一方面維持腸道穩態,另一方面影響與大腦相關活動。腸道微生物群可通過免疫系統、迷走神經和微生物代謝物與大腦交流,影響認知障礙發展。
7 "小結與展望
益生菌通過調節代謝、改善胰島素敏感度、降低炎癥等機制控制血糖、緩解IR,成為DM輔助治療的新興策略。作為一項安全性較高的前沿療法,攝入益生菌對DM的相關并發癥,如牙周炎、腎病及認知障礙具有潛在療效,可實現多靶點干預。盡管益生菌療法在DM管理中有一定潛力,但目前研究仍處于臨床試驗階段,樣本量小,動物實驗居多,且療效不穩定,未來需解決菌株特異性、臨床應用、長期安全性及個體化適配等問題。開展多中心、大樣本RCT的標準化研究,深入探索益生菌如何通過腸–腦軸、腸–腎軸影響全身代謝的機制;建立臨床數據與基礎研究的雙向反饋機制加速成果應用。隨著微生物組學和技術的不斷進步,工程益生菌、合生元可通過微生物組精準干預,篩選關鍵菌群標志物進行指導治療,成為未來DM治療的主流方向。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1]"" American Diabetes Association Professional Practice Committee. 2. Diagnosis and classification of diabetes: Standards of care in diabetes-2024[J]. Diabetes Care, 2024, 47(Suppl 1): S20–S42.
[2]"" International Diabetes Federation. IDF diabetes atlas 2025[EB/OL]. (2025-04-07)[2025-07-12]. https://diabetesatlas. org/resources/idf-diabetes-atlas-2025/.
[3]"" LI S, LIU Z, ZHANG Q, et al. The antidiabetic potential of probiotics: A review[J]. Nutrients, 2024, 16(15): 2494.
[4]"" PANDEY K R, NAIK S R, VAKIL B V. Probiotics, prebiotics and synbiotics- A review[J]. J Food Sci Technol, 2015, 52(12): 7577–7587.
[5]"" KUO S M. The interplay between fiber and the intestinal microbiome in the inflammatory response[J]. Adv Nutr, 2013, 4(1): 16–28.
[6]"" KRUMBECK J A, WALTER J, HUTKINS R W. Synbiotics for improved human health: Recent developments, challenges, and opportunities[J]. Annu Rev Food Sci Technol, 2018, 9: 451–479.
[7]"" PE?A A S. Intestinal flora, probiotics, prebiotics, symbiotics and novel foods[J]. Rev Esp Enferm Dig, 2007, 99(11): 653–658.
[8]"" THOO L, NOTI M, KREBS P. Keep calm: The intestinal barrier at the interface of peace and war[J]. Cell Death Dis, 2019, 10(11): 849.
[9]"" LIANG L, LIU L, ZHOU W, et al. Gut microbiota-derived butyrate regulates gut mucus barrier repair by activating the macrophage/Wnt/ERK signaling pathway[J]. Clin Sci (Lond), 2022, 136(4): 291–307.
[10] DU L, LI Q, YI H, et al. Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus[J]. Biomed Pharmacother, 2022, 149: 112839.
[11] SMITH P M, HOWITT M R, PANIKOV N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341(6145): 569–573.
[12] PINGITORE A, GONZALEZ-ABUIN N, RUZ-MALDONADO I, et al. Short chain fatty acids stimulate insulin secretion and reduce apoptosis in mouse and human islets in vitro: Role of free fatty acid receptor 2[J]. Diabetes Obes Metab, 2019, 21(2): 330–339.
[13] PAN P, OSHIMA K, HUANG Y W, et al. Loss of FFAR2 promotes colon cancer by epigenetic dysregulation of inflammation suppressors[J]. Int J Cancer, 2018, 143(4): 886–896.
[14] ZHOU Z, SUN B, YU D, et al. Gut microbiota: An important player in type 2 diabetes mellitus[J]. Front Cell Infect Microbiol, 2022, 12: 834485.
[15] FASANO A, NOT T, WANG W, et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease[J]. Lancet, 2000, 355(9214): 1518–1519.
[16] ZHANG S, MA J, MA Y, et al. Engineering probiotics for diabetes management: Advances, challenges, and future directions in translational microbiology[J]. Int J Nanomedicine, 2024, 19: 10917–10940.
[17] MA Q, LI Y, LI P, et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora[J]. Biomed Pharmacother, 2019, 117: 109138.
[18] KIMURA I, INOUE D, HIRANO K, et al. The SCFA receptor GPR43 and energy metabolism[J]. Front Endocrinol (Lausanne), 2014, 5: 85.
[19] CORB ARON R A, ABID A, VESA C M, et al. Recognizing the benefits of pre-/probiotics in metabolic syndrome and type 2 diabetes mellitus considering the influence of akkermansia muciniphila as a key gut bacterium[J]. Microorganisms, 2021, 9(3): 618.
[20] MORAVEJOLAHKAMI A R, SHAKIBAEI M, FAIRLEY A M, et al. Probiotics, prebiotics, and synbiotics in type 1 diabetes mellitus: A systematic review and Meta-analysis of clinical trials[J]. Diabetes Metab Res Rev, 2024, 40(2): e3655.
[21] LI G, FENG H, MAO X L, et al. The effects of probiotics supplementation on glycaemic control among adults with type 2 diabetes mellitus: A systematic review and Meta-analysis of randomised clinical trials[J]. J Transl Med, 2023, 21(1): 442.
[22] NASERI K, SAADATI S, GHAEMI F, et al. The effects of probiotic and synbiotic supplementation on inflammation, oxidative stress, and circulating adiponectin and leptin concentration in subjects with prediabetes and type 2 diabetes mellitus: A GRADE-assessed systematic review, Meta-analysis, and Meta-regression of randomized clinical trials[J]. Eur J Nutr, 2023, 62(2): 543–561.
[23] HORVATH A, LEBER B, FELDBACHER N, et al. Effects of a multispecies synbiotic on glucose metabolism, lipid marker, gut microbiome composition, gut permeability, and quality of life in diabesity: A randomized, double-blind, placebo-controlled pilot study[J]. Eur J Nutr, 2020, 59(7): 2969–2983.
[24] KASSAIAN N, FEIZI A, AMINORROAYA A, et al. The effects of probiotics and synbiotic supplementation on glucose and insulin metabolism in adults with prediabetes: A double-blind randomized clinical trial[J]. Acta Diabetol, 2018, 55(10): 1019–1028.
[25] WU C Z, YUAN Y H, LIU H H, et al. Epidemiologic relationship between periodontitis and type 2 diabetes mellitus[J]. BMC Oral Health, 2020, 20(1): 204.
[26] GRAZIANI F, GENNAI S, SOLINI A, et al. A systematic review and Meta-analysis of epidemiologic observational evidence on the effect of periodontitis on diabetes. An update of the EFP-AAP review[J]. J Clin Periodontol, 2018, 45(2): 167–187.
[27] CHEN S, ZHANG Y. Mechanism and application of Lactobacillus in type 2 diabetes-associated periodontitis[J]. Front Public Health, 2023, 11: 1248518.
[28] ZHANG Y, LU M, ZHANG Y, et al. Clostridium butyricum MIYAIRI 588 alleviates periodontal bone loss in mice with diabetes mellitus[J]. Ann N Y Acad Sci, 2023, 1529(1): 84–100.
[29] WICKENS K L, BARTHOW C A, MURPHY R, et al. Early pregnancy probiotic supplementation with Lactobacillus rhamnosus HN001 may reduce the prevalence of gestational diabetes mellitus: A randomised controlled trial[J]. Br J Nutr, 2017, 117(6): 804–813.
[30] MU J, GUO X, ZHOU Y, et al. The effects of probiotics/synbiotics on glucose and lipid metabolism in women with gestational diabetes mellitus: A Meta-analysis of randomized controlled trials[J]. Nutrients, 2023, 15(6): 1375.
[31] DAVIDSON S J, BARRETT H L, PRICE S A, et al. Probiotics for preventing gestational diabetes[J]. Cochrane Database Syst Rev, 2021, 4(4): CD009951.
[32] NI Y, ZHENG L, NAN S, et al. Enterorenal crosstalks in diabetic nephropathy and novel therapeutics targeting the gut microbiota[J]. Acta Biochim Biophys Sin (Shanghai), 2022, 54(10): 1406–1420.
[33] LV Q, LI Z, SUI A, et al. The role and mechanisms of gut microbiota in diabetic nephropathy, diabetic retinopathy and cardiovascular diseases[J]. Front Microbiol, 2022, 13: 977187.
[34] DENG L, YANG Y, XU G. Empagliflozin ameliorates type 2 diabetes mellitus-related diabetic nephropathy via altering the gut microbiota[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2022, 1867(12): 159234.
[35] ZHU H, CAO C, WU Z, et al. The probiotic L. casei Zhang slows the progression of acute and chronic kidney disease[J]. Cell Metab, 2021, 33(10): 1926–1942.
[36] HUANG H W, CHEN M J. Exploring the preventive and therapeutic mechanisms of probiotics in chronic kidney disease through the gut-kidney axis[J]. J Agric Food Chem, 2024, 72(15): 8347–8364.
[37] DAI Y, QUAN J, XIONG L, et al. Probiotics improve renal function, glucose, lipids, inflammation and oxidative stress in diabetic kidney disease: A systematic review and Meta-analysis[J]. Ren Fail, 2022, 44(1): 862–880.
[38] YOU Y, LIU Z, CHEN Y, et al. The prevalence of mild cognitive impairment in type 2 diabetes mellitus patients: A systematic review and Meta-analysis[J]. Acta Diabetol, 2021, 58(6): 671–685.
[39] BIESSELS G J, DESPA F. Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications[J]. Nat Rev Endocrinol, 2018, 14(10): 591–604.
[40] SHEN X, ZHAO F, ZHAO Z, et al. Probiotics: A potential strategy for improving diabetes mellitus complicated with cognitive impairment[J]. Microbiol Res, 2025, 290: 127960.