[摘要] 多囊卵巢綜合征(polycystic ovary syndrome,PCOS)是育齡期女性常見的內(nèi)分泌代謝紊亂疾病。鐵死亡是一種鐵依賴的程序性細胞死亡方式,由脂質(zhì)過氧化驅(qū)動。內(nèi)質(zhì)網(wǎng)應(yīng)激則與代謝紊亂及細胞凋亡密切相關(guān)。研究表明鐵死亡和內(nèi)質(zhì)網(wǎng)應(yīng)激通過調(diào)控氧化應(yīng)激、胰島素抵抗及卵泡顆粒細胞功能障礙參與PCOS的發(fā)生發(fā)展。本文綜述PCOS中鐵死亡與內(nèi)質(zhì)網(wǎng)應(yīng)激的分子機制及交互作用,重點探討靶向調(diào)控相關(guān)通路的治療潛力,為PCOS的精準治療提供理論依據(jù)。
[關(guān)鍵詞] 多囊卵巢綜合征;鐵死亡;內(nèi)質(zhì)網(wǎng)應(yīng)激;靶點
[中圖分類號] R711.75" """"[文獻標識碼] A """""[DOI] 10.3969/j.issn.1673-9701.2025.24.024
多囊卵巢綜合征(polycystic ovary syndrome,PCOS)以高雄激素血癥、胰島素抵抗、排卵障礙及卵巢多囊樣改變?yōu)樘卣鳎蓪?dǎo)致無排卵性不孕[1]。現(xiàn)有PCOS治療以緩解癥狀為主,針對其核心病理機制的干預(yù)仍亟待突破。研究表明鐵死亡與內(nèi)質(zhì)網(wǎng)應(yīng)激(endoplasmic reticulum stress,ERS)的交互作用是連接PCOS代謝紊亂與生殖損傷的關(guān)鍵樞紐[2]。鐵死亡介導(dǎo)顆粒細胞(granulose cell,GC)脂質(zhì)過氧化,ERS可加劇卵巢纖維化與卵泡閉鎖[3];高雄激素血癥協(xié)同激活二者,形成“氧化損傷–蛋白質(zhì)穩(wěn)態(tài)失衡”惡性循環(huán)[4]。本文綜述PCOS中鐵死亡與ERS的調(diào)控網(wǎng)絡(luò),為PCOS潛在治療靶點的發(fā)現(xiàn)提供理論依據(jù)。
1" PCOS與鐵死亡
1.1" 鐵死亡的分子機制
鐵死亡是一種程序性細胞死亡方式,由脂質(zhì)過氧化驅(qū)動,主要受到鐵代謝和谷胱甘肽代謝等途徑的調(diào)節(jié)。核因子紅系2相關(guān)因子2(nuclear factor erythroid 2-related factor 2,Nrf2)等轉(zhuǎn)錄因子及Hippo信號通路也可間接影響鐵死亡[5]。
細胞膜上含有多不飽和脂肪酸(polyunsaturated fatty acid,PUFA)的磷脂易發(fā)生過氧化形成脂質(zhì)過氧化物并誘發(fā)鐵死亡。生理狀況下,細胞膜上的胱氨酸/谷氨酸轉(zhuǎn)運受體[系統(tǒng)Xc-,由溶質(zhì)載體家族7成員11(solute carrier family 7 member 11,SLC7A11)和溶質(zhì)載體家族3成員2兩個亞基組成]介導(dǎo)胱氨酸-谷氨酸交換合成谷胱甘肽(glutathione,GSH);谷胱甘肽過氧化物酶4(glutathione peroxidase 4,GPX4)利用GSH還原脂質(zhì)過氧化物為無害的PUFA-OH。若該通路受阻,大量脂質(zhì)過氧化物積累導(dǎo)致鐵死亡。酰基輔酶A合成酶長鏈家族成員4(acyl-CoA synthetase long-chain family member 4,ACSL4)可促進PUFA磷脂合成,脂氧合酶直接催化PUFA氧化,二者均可增加鐵死亡的敏感度。
鐵過載通過芬頓反應(yīng)驅(qū)動脂質(zhì)過氧化:轉(zhuǎn)鐵蛋白受體(transferrin receptor,TFRC)介導(dǎo)鐵攝取,鐵儲存于鐵蛋白,核受體共激活因子4(nuclear receptor coactivator 4,NCOA4)介導(dǎo)鐵蛋白自噬釋放Fe2+,過量Fe2+可催化過氧化氫生成以羥基自由基為主的活性氧(reactive oxygen,ROS),即芬頓反應(yīng)。鈣黏蛋白E可通過激活Nrf2和Hippo信號通路抑制轉(zhuǎn)錄共激活因子Yes相關(guān)蛋白(Yes-associated protein,YAP)的活性,降低細胞對鐵死亡的敏感度。
1.2" PCOS中的鐵死亡機制
PCOS患者的內(nèi)分泌失衡可促進鐵死亡。高雄激素血癥和鐵死亡之間存在惡性循環(huán)。高雄激素血癥下調(diào)卵巢GC中的GPX4水平,促進NCOA4誘導(dǎo)鐵蛋白重鏈1(ferritin heavy chain 1,F(xiàn)TH1)降解及Fe2+釋放,激活PCOS患者卵巢鐵死亡;而鐵死亡導(dǎo)致的細胞損傷則進一步增強高雄激素的病理效應(yīng),加劇PCOS進展[6]。胰島素抵抗與鐵死亡亦可相互促進[7-8]。高雄激素血癥和高胰島素血癥共同誘導(dǎo)PCOS患者卵巢中的游離PUFA水平異常,一方面通過脂代謝途徑介導(dǎo)鐵死亡[9];另一方面通過抑制葡萄糖氧化引起ROS累積,加劇胰島素抵抗。
1.3" 鐵死亡對PCOS的卵泡發(fā)育和生殖結(jié)局的影響
GC鐵死亡引起的功能障礙是PCOS的核心特征。Shi等[10]發(fā)現(xiàn)同型半胱氨酸處理后人卵巢顆粒樣腫瘤細胞系KGN中的ACSL4表達水平顯著高于對照組;PCOS患者GC中過表達的微RNA(microRNA,miRNA)-93-5p通過調(diào)節(jié)核因子κB信號通路下調(diào)GPX4、SLC7A11和Nrf2水平,促進GC鐵死亡和凋亡[11]。GC損傷可引起卵泡閉鎖,提示卵泡的早期閉鎖與鐵過載相關(guān)[12]。
對比生殖結(jié)局良好患者,反復(fù)著床失敗患者子宮內(nèi)膜樣本顯示,細胞GPX4缺失及其導(dǎo)致的脂質(zhì)ROS過度積累提示鐵死亡的發(fā)生引起胚胎植入失敗及妊娠丟失[13]。PCOS類器官模型顯示,GPX4缺陷通過非Smad2/3信號通路誘導(dǎo)纖連蛋白表達水平升高,加速分泌期子宮內(nèi)膜的纖維化[14]。PCOS孕鼠模型中,GPX4/GSH軸異常使脂質(zhì)過氧化物的生成增加,導(dǎo)致子宮和胎盤氧化應(yīng)激狀態(tài)加重和功能失調(diào)。其中胎盤內(nèi)的鐵死亡可被自身代償和N-乙酰半胱氨酸(N-acetyl-cysteine,NAC)治療部分補救,子宮內(nèi)鐵死亡更為典型且NAC治療對其線粒體損傷無效,提示鐵死亡途徑的觸發(fā)具有組織特異性[8,15]。
1.4" 靶向鐵死亡的治療潛力
節(jié)律基因Per1在PCOS患者卵巢GC中異常高表達,通過抑制固醇調(diào)節(jié)元件結(jié)合因子2/花生四烯酸15-脂肪氧化酶軸調(diào)節(jié)GC的脂質(zhì)代謝和鐵死亡[16]。TFRC的表達可增加鐵含量,介導(dǎo)ROS的生成,激活線粒體自噬,通過TFRC/煙酰胺腺嘌呤二核苷酸磷酸氧化酶1/PTEN誘導(dǎo)的激酶1/ACSL4通路誘導(dǎo)脂質(zhì)過氧化和KGN細胞鐵死亡[17]。蒼術(shù)素可調(diào)節(jié)丙酮酸脫氫酶激酶4的表達,進一步介導(dǎo)Janus激酶/信號轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄活化因子3信號通路抑制GC鐵死亡[18]。PCOS患者血清外泌體中miR-128-3p降低,通過靶向集落刺激因子1介導(dǎo)p38/c-Jun氨基端激酶/SLC7A11軸誘導(dǎo)GC鐵死亡,可作為PCOS的潛在診斷標志物[19]。部分藥物具有靶向鐵死亡治療PCOS的潛力。小檗堿通過調(diào)節(jié)circ_0097636/miR-186-5p/沉默調(diào)節(jié)蛋白3信號通路,改善二氫睪酮誘導(dǎo)的KGN細胞損傷和鐵死亡[20]。
2" ERS與PCOS
2.1" ERS的分子基礎(chǔ)
內(nèi)質(zhì)網(wǎng)是蛋白質(zhì)折疊的主要場所。未折疊蛋白質(zhì)積累觸發(fā)ERS,通過蛋白激酶RNA樣內(nèi)質(zhì)網(wǎng)激酶(protein kinase RNA-like endoplasmic reticulum kinase,PERK)、肌醇需求酶1(inositol-requiring enzyme 1,IRE1)和激活轉(zhuǎn)錄因子(activating transcription factor,ATF)6激活未折疊蛋白反應(yīng)的3個分支。激活的IRE1剪切X盒結(jié)合蛋白1(X-box binding protein 1,XBP1)的信使RNA,產(chǎn)生有活性的XBP1,上調(diào)分子伴侶葡萄糖調(diào)節(jié)蛋白78(glucose regulated protein 78,GRP78)等基因表達;PERK激活后磷酸化真核起始因子2α(eukaryotic initiation factor 2α,eIF2α),抑制其翻譯活性,減輕內(nèi)質(zhì)網(wǎng)的蛋白質(zhì)折疊負荷,同時促進ATF4翻譯。ATF4在慢性ERS作用下上調(diào)促凋亡轉(zhuǎn)錄因子C/EBP同源蛋白(pro-apoptotic transcriptional factor C/EBP homologous protein,CHOP)。
2.2" ERS與PCOS病理
PCOS患者濾泡微環(huán)境中的高雄激素通過激活GC中的ERS觸發(fā)多重病理效應(yīng):通過CHOP-死亡受體5軸誘導(dǎo)竇卵泡GC凋亡,并導(dǎo)致竇卵泡閉鎖[21];通過PERK/ATF4信號通路誘導(dǎo)LINC00173表達,進而上調(diào)Harakiri蛋白抑制磷脂酰肌醇3激酶(phosphoinositide 3-kinase,PI3K)/蛋白激酶B(protein kinase B,PKB,又稱為Akt)信號通路,介導(dǎo)KGN細胞凋亡[22];激活KGN細胞的炎癥反應(yīng),觸發(fā)細胞焦亡,導(dǎo)致PCOS濾泡發(fā)育不良。此外ERS還可介導(dǎo)轉(zhuǎn)化生長因子-β1表達水平上調(diào),通過IRE1和PERK信號通路促進卵巢纖維化[23];經(jīng)ATF4信號通路激活Notch2信號傳導(dǎo),調(diào)節(jié)卵丘卵母細胞復(fù)合體的擴增[24];導(dǎo)致晚期糖基化終末產(chǎn)物受體表達水平升高和積累[25]。
2.3" ERS的治療潛力
研究表明減輕ERS介導(dǎo)的細胞凋亡可緩解PCOS表型[26]。坤泰膠囊通過改善IRE1-XBP1和PERK-eIF2α-ATF4緩解睪酮誘導(dǎo)的ERS,減少GC凋亡,改善周期紊亂、多囊卵巢及代謝障礙[27];下調(diào)NOX4通過PERK/ATF4信號通路減輕ERS,保護卵巢[28];敲低溴結(jié)構(gòu)域蛋白4通過滅活GRP78介導(dǎo)的ERS減少雙氫睪酮誘導(dǎo)的卵巢GC損傷[26]。
3" 鐵死亡和ERS聯(lián)合機制
PCOS中的高雄激素血癥可同時激活鐵死亡與ERS,二者形成相互依賴的協(xié)同網(wǎng)絡(luò)。研究表明高雄激素血癥誘導(dǎo)鐵死亡依賴于ERS,應(yīng)用ERS抑制劑可顯著逆轉(zhuǎn)高雄激素血癥處理KGN細胞中的氧化應(yīng)激、鐵過載及鐵死亡相關(guān)基因和蛋白表達的改變,抑制鐵死亡發(fā)生[29]。這種交互作用通過多途徑共同加劇PCOS的病理進程。
3.1" 氧化應(yīng)激惡性循環(huán)
鐵死亡導(dǎo)致脂質(zhì)過氧化產(chǎn)物積累,激活ERS并促進ROS生成;而ERS通過抑制抗氧化轉(zhuǎn)錄因子Nrf2加劇氧化應(yīng)激,形成自我放大的惡性循環(huán)[30]。
3.2" 鈣離子穩(wěn)態(tài)雙向調(diào)控
鐵死亡引起的細胞內(nèi)鈣離子超載可抑制肌漿/內(nèi)質(zhì)網(wǎng)鈣ATP酶活性,破壞蛋白質(zhì)折疊功能而加重ERS[31];同時,ERS誘導(dǎo)的CHOP可促進鐵死亡相關(guān)脂質(zhì)過氧化和線粒體損傷,形成雙向調(diào)控網(wǎng)絡(luò)[21]。
3.3" 炎癥級聯(lián)放大
ERS通過ATF4激活硫氧還蛋白互作蛋白(thioredoxin-interacting protein,TXNIP)。作為氧化應(yīng)激與炎癥的橋梁,TXNIP可顯著增強卵巢GC對鐵死亡的敏感度。在棕櫚酸誘導(dǎo)下,ATF4/TXNIP軸的激活可加劇高雄激素環(huán)境下的GC損傷和卵巢表型,而ERS抑制劑可有效阻斷此過程[32]。值得注意的是,卵巢癌細胞研究中發(fā)現(xiàn)ERS可同步誘導(dǎo)細胞凋亡和鐵死亡,其中蒽醌修飾通過上調(diào)GRP78、激活A(yù)TF4并下調(diào)GPX4的表達,為PCOS中鐵死亡與ERS互作的研究提供新視角[33]。
4" PCOS治療策略:靶向鐵死亡和ERS
4.1" 多靶點藥物
一線藥物二甲雙胍通過腺苷酸活化蛋白激酶/哺乳動物雷帕霉素靶蛋白信號通路抑制鐵死亡,并下調(diào)PERK/CHOP信號通路減輕ERS,改善胰島素抵抗及排卵功能[34];抗氧化劑NAC顯示出減輕PCOS患者體內(nèi)氧化應(yīng)激、鐵死亡和ERS的潛力,可全面改善PCOS患者的生殖功能[35];芳香烴受體(aryl hydrocarbon receptor,AHR)拮抗劑通過阻斷ERS誘導(dǎo)的AHR/細胞色素P450家族1亞家族B成員1信號通路減少閉鎖卵泡[36];egl-9家族缺氧誘導(dǎo)因子1(egl-9 family hypoxia inducible factor 1 gene,EGLN1)抑制劑羅沙司他通過靶向EGLN1-缺氧誘導(dǎo)因子1亞基α-鐵死亡軸并逆轉(zhuǎn)中斷的發(fā)情周期和卵巢形態(tài)改善PCOS[37]。
4.2" 天然化合物
天然化合物多靶點作用的高安全性對PCOS治療具有重要意義。姜黃素抑制ERS相關(guān)IRE1α-XBP1信號通路并激活PI3K/Akt信號通路,減少GC凋亡,緩解大鼠體質(zhì)量[38-40]。黃芩素通過調(diào)節(jié)ACSL4、GPX4等鐵死亡相關(guān)蛋白及FTH1、環(huán)加氧酶2,減輕卵巢脂質(zhì)過氧化和炎癥,改善妊娠胎盤發(fā)育[41]。
4.3" 生活方式管理
PCOS患者的治療可結(jié)合生活方式長期管理,主要包括飲食干預(yù)和體育鍛煉。飲食干預(yù)方面,富含n-3 PUFA的飲食(如魚油、亞麻籽油)可調(diào)節(jié)ERS和鐵死亡,有效改善PCOS大鼠血液中激素水平、脂質(zhì)代謝、胰島素敏感度和炎癥[42];其機制與激活Hippo信號通路、抑制YAP1和Nrf2之間的相互作用、增加卵巢GC對鐵死亡的敏感度、緩解卵泡停滯有關(guān)[43-44]。芝麻油通過PI3K/蛋白激酶A和絲裂原活化蛋白激酶/胞外信號調(diào)節(jié)激酶2信號通路改善ERS和類固醇合成,對PCOS發(fā)揮保護作用[36]。規(guī)律運動可降低ERS,減少鐵死亡風(fēng)險,改善胰島素抵抗[45];同時誘導(dǎo)鳶尾素生成,抑制IRE1α-TXNIP/ ROS-核苷酸結(jié)合寡聚結(jié)構(gòu)域樣受體蛋白3信號通路,提高GC和膜細胞的活力,抑制炎癥小體、纖維化和氧化應(yīng)激,改善PCOS大鼠的濾泡功能[38-40]。此外,中醫(yī)電針療法可緩解PCOS樣癥狀[46]。而基于子宮內(nèi)膜鐵死亡相關(guān)蛋白和免疫微環(huán)境的差異表達,有望建立預(yù)測輔助生殖結(jié)局的預(yù)后模型,指導(dǎo)個體化治療[47]。結(jié)合不同的治療策略,臨床工作者能更好地適應(yīng)PCOS的異質(zhì)性,為患者提供更全面的保護。
5" 小結(jié)與展望
高雄激素血癥驅(qū)動的鐵死亡與ERS雙重打擊共同破壞卵巢微環(huán)境穩(wěn)態(tài),影響PCOS激素代謝、卵泡發(fā)育異常和生殖結(jié)局。鐵死亡和ERS通路中的核心分子有望作為PCOS潛在的新型診斷標志物和治療靶點。未來研究需深入解析不同PCOS表型中兩者的特異性作用及互作網(wǎng)絡(luò)細節(jié),以期針對不同PCOS亞型進行個體化聯(lián)合治療策略的優(yōu)化。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1]"" ESCOBAR-MORREALE H F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment[J]. Nat Rev Endocrinol, 2018, 14(5): 270–284.
[2]"" WANG M, ZHANG B Q, MA S, et al. Broadening horizons: The role of ferroptosis in polycystic ovary syndrome[J]. Front Endocrinol (Lausanne), 2024, 15: 1390013.
[3]"" DING H, XIANG Y, ZHU Q, et al. Endoplasmic reticulum stress-mediated ferroptosis in granulosa cells contributes to follicular dysfunction of polycystic ovary syndrome driven by hyperandrogenism[J]. Reprod Biomed Online, 2024, 49(3): 104078.
[4]"" HUANG J, FAN H, LI C, et al. Dysregulation of ferroptosis-related genes in granulosa cells associates with impaired oocyte quality in polycystic ovary syndrome[J]. Front Endocrinol (Lausanne), 2024, 15: 1346842.
[5]"" JIANG X, STOCKWELL B R, CONRAD M. Ferroptosis: Mechanisms, biology and role in disease[J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266–282.
[6]"" LI X, LIN Y, CHENG X, et al. Ovarian ferroptosis induced by androgen is involved in pathogenesis of PCOS[J]. Hum Reprod Open, 2024, 2024(2): hoae013.
[7]"" LUQUE-RAMíREZ M, ALVAREZ-BLASCO F, BOTELLA- CARRETERO J I, et al. Increased body iron stores of obese women with polycystic ovary syndrome are a consequence of insulin resistance and hyperinsulinism and are not a result of reduced menstrual losses[J]. Diabetes Care, 2007, 30(9): 2309–2313.
[8]"" ZHANG Y, HU M, JIA W, et al. Hyperandrogenism and insulin resistance modulate gravid uterine and placental ferroptosis in PCOS-like rats[J]. J Endocrinol, 2020, 246(3): 247–263.
[9]"" LI S, CHU Q, MA J, et al. Discovery of novel lipid profiles in PCOS: Do insulin and androgen oppositely regulate bioactive lipid production?[J]. J Clin Endocrinol Metab, 2017, 102(3): 810–821.
[10] SHI Q, LIU R, CHEN L. Ferroptosis inhibitor ferrostatin?1 alleviates homocysteine?induced ovarian granulosa cell injury by regulating TET activity and DNA methylation[J]. Mol Med Rep, 2022, 25(4): 130.
[11] TAN W, DAI F, YANG D, et al. MiR-93-5p promotes granulosa cell apoptosis and ferroptosis by the NF-κB signaling pathway in polycystic ovary syndrome[J]. Front Immunol, 2022, 13: 967151.
[12] ZHANG J, LIU Y, YAO W, et al. Initiation of follicular atresia: Gene networks during early atresia in pig ovaries[J]. Reproduction, 2018, 156(1): 23–33.
[13] YANG J, WANG L, MA J, et al. Endometrial proteomic profile of patients with repeated implantation failure[J]. Front Endocrinol (Lausanne), 2023, 14: 1144393.
[14] YE Z, CHENG M, LIAN W, et al. GPX4 deficiency-induced ferroptosis drives endometrial epithelial fibrosis in polycystic ovary syndrome[J]. Redox Biol, 2025, 83: 103615.
[15] HU M, ZHANG Y, MA S, et al. Suppression of uterine and placental ferroptosis by N-acetylcysteine in a rat model of polycystic ovary syndrome[J]. Mol Hum Reprod, 2021, 27(12): gaab067.
[16] CHEN Y, LIU Z, CHEN H, et al. Rhythm gene PER1 mediates ferroptosis and lipid metabolism through SREBF2/ALOX15 axis in polycystic ovary syndrome[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(5): 167182.
[17] ZHANG L, WANG F, LI D, et al. Transferrin receptor-mediated reactive oxygen species promotes ferroptosis of KGN cells via regulating NADPH oxidase 1/PTEN induced kinase 1/acyl-CoA synthetase long chain family member 4 signaling[J]. Bioengineered, 2021, 12(1): 4983–4994.
[18] ZHOU Q, OUYANG X, TANG H, et al. Atractylodin alleviates polycystic ovary syndrome by inhibiting granule cells ferroptosis through pyruvate dehydrogenase kinase 4-mediated JAK-STAT3 pathway[J]. Int Immuno- pharmacol, 2025, 146: 113817.
[19] LV Y, HAN S, SUN F, et al. Decreased miR-128-3p in serum exosomes from polycystic ovary syndrome induces ferroptosis in granulosa cells via the p38/JNK/SLC7A11 axis through targeting CSF1[J]. Cell Death Discov, 2025, 11(1): 64.
[20] WANG S, WANG Y, QIN Q, et al. Berberine protects against dihydrotestosterone-induced human ovarian gra- nulosa cell injury and ferroptosis by regulating the circ_ 0097636/miR-186-5p/SIRT3 pathway[J]. Appl Biochem Biotechnol, 2024, 196(8): 5265–5282.
[21] AZHARY J M K, HARADA M, TAKAHASHI N, et al. Endoplasmic reticulum stress activated by androgen enhances apoptosis of granulosa cells via induction of death receptor 5 in PCOS[J]. Endocrinology, 2019, 160(1): 119–132.
[22] ZHAO Y, WU X, MENG F, et al. ER stress-induced LINC00173 promotes the apoptosis of ovarian granulosa cells by regulating the HRK/PI3K/Akt pathway in polycystic ovary syndrome[J]. Sci Rep, 2024, 14(1): 24636.
[23] TAKAHASHI N, HARADA M, HIROTA Y, et al. Activation of endoplasmic reticulum stress in granulosa cells from patients with polycystic ovary syndrome contributes to ovarian fibrosis[J]. Sci Rep, 2017, 7(1): 10813–10824.
[24] KOIKE H, HARADA M, KUSAMOTO A, et al. Notch signaling induced by endoplasmic reticulum stress regulates cumulus-oocyte complex expansion in polycystic ovary syndrome[J]. Biomolecules, 2022, 12(8): 1037.
[25] AZHARY J, HARADA M, KUNITOMI C, et al. Androgens increase accumulation of advanced glycation end products in granulosa cells by activating ER stress in PCOS[J]. Endocrinology, 2020, 161(2): bqaa015.
[26] ZHANG Y, WANG J. BRD4 absence inactivates endoplasmic reticulum stress to retard dehydroepiandrosterone- triggered ovarian granular cell apoptosis in polycystic ovary syndrome via GRP78[J]. Tissue Cell, 2024, 91: 102531.
[27] XU Y, PAN C S, LI Q, et al. The ameliorating effects of Bushen Huatan granules and Kunling Wan on polycystic ovary syndrome induced by dehydroepiandrosterone in rats[J]. Front Physiol, 2021, 12: 525145.
[28] YU N, WU L, XING X. NOX4 deficiency improves the impaired viability, inhibited the apoptosis and suppressed autophagy of DHEA-treated ovarian granulosa cells through inhibiting endoplasmic reticulum stress via inactivating PERK/ATF4 pathway[J]. Tissue Cell, 2025, 92: 102640.
[29] DING H, XIANG Y, ZHU Q, et al. Endoplasmic reticulum stress-mediated ferroptosis in granulosa cells contributes to follicular dysfunction of polycystic ovary syndrome driven by hyperandrogenism[J]. Reprod Biomed Online, 2024, 49(3): 104078.
[30] LIU Z, NAN P, GONG Y, et al. Endoplasmic reticulum stress-triggered ferroptosis via the XBP1-Hrd1-Nrf2 pathway induces EMT progression in diabetic nephropathy[J]. Biomed Pharmacother, 2023, 164: 114897.
[31] ZHANG Z, ZHOU H, GU W, et al. CGI1746 targets σ1R to modulate ferroptosis through mitochondria-associated membranes[J]. Nat Chem Biol, 2024, 20(6): 699–709.
[32] ZHANG X, LIU J, BAI C, et al. Palmitic acid enhances the sensitivity of ferroptosis via endoplasmic reticulum stress mediated the ATF4/TXNIP axis in polycystic ovary syndrome[J]. Phytomedicine, 2025, 142: 156777.
[33] 許淑妹, 楊盈盈, 趙英丹, 等. 蒽醌修飾物4X觸發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激誘導(dǎo)卵巢癌細胞死亡模式研究[J]. 廣西醫(yī)科大學(xué)學(xué)報, 2023, 40(6): 922–929.
[34] PENG Q, CHEN X, LIANG X, et al. Metformin improves polycystic ovary syndrome in mice by inhibiting ovarian ferroptosis[J]. Front Endocrinol(Lausanne), 2023, 14: 1070264.
[35] FANG Y, DING H, LI T, et al. N-acetylcysteine supplementation improves endocrine-metabolism profiles and ovulation induction efficacy in polycystic ovary syndrome[J]. J Ovarian Res, 2024, 17(1): 205.
[36] KUNITOMI C, HARADA M, KUSAMOTO A, et al. Induction of aryl hydrocarbon receptor in granulosa cells by endoplasmic reticulum stress contributes to pathology of polycystic ovary syndrome[J]. Mol Hum Reprod, 2021, 27(3): gaab003.
[37] NI F, WANG F, SUN J, et al. Proteome-wide Mendelian randomization and functional studies uncover therapeutic targets for polycystic ovarian syndrome[J]. Am J Hum Genet, 2024, 111(12): 2799–2813.
[38] ZHANG Y, WANG L, WENG Y, et al. Curcumin inhibits hyperandrogen-induced IRE1α-XBP1 pathway activation by activating the PI3K/Akt signaling in ovarian granulosa cells of PCOS model rats[J]. Oxid Med Cell Longev, 2022, 2022: 2113293.
[39] ZHANG Y, WENG Y, WANG D, et al. Curcumin in combination with aerobic exercise improves follicular dysfunction via inhibition of the hyperandrogen-induced IRE1α/XBP1 endoplasmic reticulum stress pathway in PCOS-like rats[J]. Oxid Med Cell Longev, 2021, 2021: 7382900.
[40] WENG Y, ZHANG Y, WANG D, et al. Exercise-induced irisin improves follicular dysfunction by inhibiting IRE1α-TXNIP/ROS-NLRP3 pathway in PCOS[J]. """""J Ovarian Res, 2023, 16(1): 151.
[41] LI Y, PENG Y, YANG Y, et al. Baicalein improves the symptoms of polycystic ovary syndrome by mitigating oxidative stress and ferroptosis in the ovary and gravid placenta[J]. Phytomedicine, 2024, 128: 155423.
[42] KOMAL F, KHAN M K, IMRAN M, et al. Impact of different omega-3 fatty acid sources on lipid, hormonal, blood glucose, weight gain and histopathological damages profile in PCOS rat model[J]. J Transl Med, 2020, 18(1): 349.
[43] ZHANG P, PAN Y, WU S, et al. N-3 PUFA promotes ferroptosis in PCOS GCs by inhibiting YAP1 through activation of the Hippo pathway[J]. Nutrients, 2023, 15(8): 1927.
[44] YANG L, CHEN J, MIAO H, et al. The landscape of alternative splicing in granulosa cells and a potential novel role of YAP1 in PCOS[J]. PLoS One, 2024, 19(12): e0315750.
[45] 梁曼娜, 朱琳. 運動改善多囊卵巢綜合征及其機制研究進展[J]. 湖北體育科技, 2023, 42(9): 827–833.
[46] PENG Y, GUO L, GU A, et al. Electroacupuncture alleviates polycystic ovary syndrome-like symptoms through improving insulin resistance, mitochondrial dysfunction, and endoplasmic reticulum stress via enhancing autophagy in rats[J]. Mol Med, 2020, 26(1): 73.
[47] ZHANG J, DING N, XIN W, et al. Quantitative proteomics reveals that a prognostic signature of the endometrium of the polycystic ovary syndrome women based on ferroptosis proteins[J]. Front Endocrinol (Lausanne), 2022, 13: 871945.
(收稿日期:2025–06–10)
(修回日期:2025–08–06)
基金項目:國家自然科學(xué)基金資助項目(81901554)
通信作者:劉凌燕,電子信箱:Lingyan@ccmu.edu.cn