中圖分類號(hào):R743.3 文獻(xiàn)標(biāo)志碼:A DOI: 10.3969/j . issn.1003-1383.2025.08.011
根據(jù)2021年全球疾病負(fù)擔(dān)(globalburdenofdisease,GBD)研究統(tǒng)計(jì),缺血性卒中(ischemicstroke,IS)位列全球致死病因第二位,占全因死亡病例的 11.6% 。同時(shí),IS也是全球傷殘調(diào)整生命年(disability-adjustedlifeyears,DALYs)損失的第四大誘因,占總DALYs的 5.6% ,其中IS占卒中相關(guān)病例的 65.3%[1] 。因此,探索新型治療靶點(diǎn)至關(guān)重要。IS的病理機(jī)制復(fù)雜,涉及血管阻塞、細(xì)胞代謝紊亂、凋亡和壞死等多種生物學(xué)過(guò)程[2]。當(dāng)前臨床干預(yù)以靜脈溶栓(如 rt -PA)和機(jī)械取栓術(shù)(如血栓切除術(shù))為主[3],但因時(shí)間窗限制及再灌注并發(fā)癥等問(wèn)題,療效仍需進(jìn)一步優(yōu)化。近年來(lái),尋求新的治療靶點(diǎn)及相關(guān)生物標(biāo)志物成為研究熱點(diǎn),其中環(huán)狀RNA(cir-cRNA)因其獨(dú)特的生物學(xué)特性和功能引起了廣泛關(guān)注。circRNA通過(guò)充當(dāng)miRNA分子海綿、結(jié)合蛋白質(zhì)、調(diào)控基因轉(zhuǎn)錄與剪接、作為翻譯模板等多種機(jī)制與多種疾病的發(fā)生和進(jìn)展密切相關(guān),包括腫瘤[4]、心血管疾病5和神經(jīng)系統(tǒng)疾病等。因此,本文就circRNA在IS中的腦保護(hù)作用研究進(jìn)展進(jìn)行綜述。
1circRNA的生物學(xué)特性及功能
1.1circRNA的生物學(xué)特性circRNA是由前體mRNA(pre-mRNA)經(jīng)反向剪接形成的內(nèi)源性非編碼RNA,其5端與3端通過(guò)共價(jià)鍵閉合形成環(huán)形結(jié)構(gòu),這一特征使其區(qū)別于具有極性末端的線性RNA[7]由于其獨(dú)特的環(huán)形構(gòu)象,circRNA表現(xiàn)出顯著的穩(wěn)定性,能夠抵抗核酸外切酶(如ribonucleaseR,RNaseR)的降解。此外,circRNA在不同組織和細(xì)胞中呈現(xiàn)出特異性的表達(dá)模式,這一特性使其在疾病診斷和靶向治療領(lǐng)域具有重要應(yīng)用潛力[8]。根據(jù)序列組成的差異,circRNA主要可分為四類:(1)外顯子環(huán)狀RNA(EcircRNA),由外顯子序列獨(dú)立成環(huán),主要富集于細(xì)胞質(zhì);(2)外顯子-內(nèi)含子環(huán)狀RNA(EiciRNA),包含部分內(nèi)含子序列,主要分布于細(xì)胞核;(3)內(nèi)含子環(huán)狀RNA(CiRNA),由內(nèi)含子直接環(huán)化形成;(4)tRNA內(nèi)含子環(huán)狀RNA(TricRNA),源自tRNA前體剪切后的內(nèi)含子區(qū)域。其中,Ecir-cRNA的豐度最高,占circRNA總量的主要部分[9-10]。
1.2circRNA的生物學(xué)功能近年來(lái),大量研究已經(jīng)證實(shí)circRNA具有多樣化的生物學(xué)功能,主要包括以下四個(gè)方面:(1)作為miRNA分子海綿吸附微RNA[1-3]。circRNA 能夠通過(guò)結(jié)合特定的 miRNA,抑制其對(duì)靶mRNA的調(diào)控作用,從而影響基因表達(dá)。例如,研究者通過(guò)激光誘導(dǎo)的脈絡(luò)膜新生血管(CNV)小鼠模型和體外缺氧應(yīng)激的內(nèi)皮細(xì)胞實(shí)驗(yàn)發(fā)現(xiàn),環(huán)狀RNA-ZBTB44(cZBTB44)可作為miR-578的海綿,抑制其活性,進(jìn)而上調(diào)血管內(nèi)皮生長(zhǎng)因子A(VEGFA)和血管細(xì)胞黏附分子1(VCAM1)的表達(dá),促進(jìn)CNV的發(fā)展。(2)與RNA結(jié)合蛋白(RBPs)特異性結(jié)合。circRNA能夠與RBPs形成穩(wěn)定的RNA-蛋白質(zhì)復(fù)合體,進(jìn)而調(diào)控RBPs的生物學(xué)活性及功能表現(xiàn)。這種相互作用可能通過(guò)空間構(gòu)象改變或競(jìng)爭(zhēng)性結(jié)合位點(diǎn),直接影響RBPs的信號(hào)傳遞效率或靶標(biāo)識(shí)別能力[14-15]。(3)調(diào)控基因轉(zhuǎn)錄和RNA剪接。位于細(xì)胞核內(nèi)的EiciRNA通過(guò)順式調(diào)控親本基因的轉(zhuǎn)錄,進(jìn)而調(diào)節(jié)基因表達(dá)。(4)翻譯小蛋白質(zhì)或多肽。部分circRNA具有翻譯小蛋白質(zhì)或多肽的能力,其翻譯機(jī)制包括依賴 m6A 修飾的翻譯、依賴核糖體進(jìn)入位點(diǎn)(IRES)的翻譯以及滾輪式翻譯[16-19]。
2 circRNA在IS的腦保護(hù)作用機(jī)制
IS發(fā)生后,腦組織因缺血缺氧引發(fā)一系列病理生理反應(yīng)。首先,氧化應(yīng)激占據(jù)主導(dǎo)地位,表現(xiàn)為活性氧(ROS)的異常積累與內(nèi)源性抗氧化防御系統(tǒng)的功能抑制,共同導(dǎo)致細(xì)胞膜完整性破壞、蛋白質(zhì)功能異常及DNA損傷[20]。隨后,線粒體穩(wěn)態(tài)失衡進(jìn)一步加劇病理進(jìn)展:氧化磷酸化過(guò)程受阻顯著減少ATP合成,引發(fā)能量代謝紊亂;同時(shí),線粒體膜通透性改變促使細(xì)胞色素C等促凋亡因子外流,激活Caspase 依賴性程序性死亡通路[21]。中樞神經(jīng)系統(tǒng)內(nèi)的膠質(zhì)細(xì)胞迅速響應(yīng)損傷信號(hào),小膠質(zhì)細(xì)胞與星形膠質(zhì)細(xì)胞通過(guò)模式識(shí)別受體(如TLR4)識(shí)別損傷相關(guān)分子模式(DAMPs),啟動(dòng)NF- κB 等信號(hào)級(jí)聯(lián)反應(yīng),促使TNF- σ?α?α?α?α 、 IL-1β 及IL-6等促炎因子大量釋放[22]。此類炎性介質(zhì)的擴(kuò)散不僅加重局部炎癥微環(huán)境,還可通過(guò)趨化因子(如CXCL1/CCL2)招募中性粒細(xì)胞、單核細(xì)胞等外周免疫細(xì)胞向缺血區(qū)浸潤(rùn),形成免疫應(yīng)答與組織損傷的正反饋循環(huán)[23-24]。此外,內(nèi)質(zhì)網(wǎng)應(yīng)激的激活導(dǎo)致未折疊蛋白反應(yīng)(UPR)啟動(dòng),初期通過(guò)恢復(fù)蛋白質(zhì)折疊功能發(fā)揮保護(hù)作用,但持續(xù)性應(yīng)激則轉(zhuǎn)向促凋亡信號(hào)傳導(dǎo)[24]。自噬作為細(xì)胞自我修復(fù)機(jī)制,在適度激活時(shí)可清除受損細(xì)胞器及錯(cuò)誤折疊蛋白,維持內(nèi)穩(wěn)態(tài);然而,過(guò)度激活的自噬則可能通過(guò)過(guò)度降解必需組分引發(fā)自噬性死亡[25]。上述病理機(jī)制相互交織,協(xié)同推動(dòng)腦損傷進(jìn)程,凸顯開(kāi)發(fā)新型干預(yù)策略的緊迫性。
值得注意的是,circRNA因其組織特異性表達(dá)模式及在神經(jīng)病理中的多效性調(diào)控作用,成為干預(yù)上述機(jī)制的潛在分子靶標(biāo)[26-27]。研究表明,circRNA通過(guò)調(diào)控神經(jīng)炎癥、動(dòng)脈粥樣硬化、神經(jīng)發(fā)生、凋亡信號(hào)及血管新生等關(guān)鍵病理環(huán)節(jié),顯著改善缺血性腦損傷,這為其轉(zhuǎn)化為臨床治療靶點(diǎn)提供了重要的理論依據(jù)[28]。
2.1circRNA參與IS的炎癥反應(yīng)缺血性腦卒中后,神經(jīng)炎癥是繼發(fā)性腦損傷的核心病理環(huán)節(jié),其發(fā)生機(jī)制涉及膠質(zhì)細(xì)胞活化、外周免疫細(xì)胞浸潤(rùn)及促炎因子級(jí)聯(lián)釋放。具體而言,小膠質(zhì)細(xì)胞在缺血初期發(fā)生極化,M1型小膠質(zhì)細(xì)胞被激活,通過(guò)模式識(shí)別受體(如TLR4)識(shí)別損傷相關(guān)分子模式(DAMPs),觸發(fā) NF-κB 信號(hào)通路上調(diào),促進(jìn)TNF- σ?α?α?α?α 一、IL-1β 、IL-6等促炎因子釋放。同時(shí),星形膠質(zhì)細(xì)胞發(fā)生反應(yīng)性增生,活化的星形膠質(zhì)細(xì)胞通過(guò)STAT3通路增強(qiáng)C3補(bǔ)體表達(dá),形成膠質(zhì)瘢痕,阻礙軸突再生。此外,血腦屏障(blood-brainbarrier,BBB)破壞后,中性粒細(xì)胞、單核/巨噬細(xì)胞及T細(xì)胞通過(guò)趨化因子(如CXCL1、CCL2)募集至缺血區(qū),釋放ROS及基質(zhì)金屬蛋白酶(MMP-9),加劇組織損傷[29-33]。近年來(lái),研究表明circRNA通過(guò)靶向炎癥信號(hào)通路中的關(guān)鍵分子,在神經(jīng)炎癥調(diào)控中發(fā)揮“分子剎車”的作用。例如,circHECTD1通過(guò)海綿吸附miR-142,解除其對(duì)TIPARP的抑制,TIPARP通過(guò)PARylation修飾抑制NF- ?×B 的核轉(zhuǎn)位,從而減少促炎因子的釋放,減輕星形膠質(zhì)細(xì)胞的激活[34]。此外,急性缺血性卒中(AIS)患者外周血中circHECTD1的水平與NIHSS評(píng)分及CRP濃度呈正相關(guān),表明其可作為炎癥反應(yīng)強(qiáng)度的動(dòng)態(tài)監(jiān)測(cè)指標(biāo)[35]。另一方面,circSC-MH1通過(guò)外泌體遞送,抑制小膠質(zhì)細(xì)胞中NF- σκB 的活化,減少TNF- ??α∝ 和IL-6的生成。靜脈注射circSC-MH1富集的外泌體可降低tMCAO 模型小鼠腦內(nèi)IL-1β 水平達(dá) 40% ,并改善神經(jīng)功能缺損[36]。ZHU等研究發(fā)現(xiàn),circ-DLGAP4通過(guò)競(jìng)爭(zhēng)性結(jié)合促炎性miRNA(如miR-143)發(fā)揮分子海綿效應(yīng),進(jìn)而抑制AIS中炎性通路的過(guò)度激活;其表達(dá)豐度與患者神經(jīng)功能缺損程度呈顯著負(fù)相關(guān)性,提示該分子在疾病進(jìn)程中的潛在調(diào)控作用[37]。綜上所述,circRNA通過(guò)多維度調(diào)控神經(jīng)炎癥,包括抑制膠質(zhì)細(xì)胞過(guò)度活化、阻斷炎癥小體信號(hào)及減少免疫細(xì)胞浸潤(rùn),但其調(diào)控作用具有時(shí)空特異性。未來(lái)需結(jié)合單細(xì)胞測(cè)序與空間轉(zhuǎn)錄組技術(shù),解析circRNA在特定細(xì)胞類型中的動(dòng)態(tài)表達(dá)模式,為精準(zhǔn)抗感染治療提供依據(jù)。
2.2circRNA參與血腦屏障破壞和修復(fù)BBB是中樞神經(jīng)系統(tǒng)與體循環(huán)間精密調(diào)控的界面系統(tǒng),由腦微血管內(nèi)皮細(xì)胞、星形膠質(zhì)細(xì)胞終足及基底膜共同構(gòu)建。它通過(guò)緊密連接蛋白網(wǎng)絡(luò)和特異性轉(zhuǎn)運(yùn)體系實(shí)現(xiàn)對(duì)血-腦物質(zhì)交換的動(dòng)態(tài)管控,從而保障神經(jīng)微環(huán)境的穩(wěn)態(tài)[38]。在IS 病理狀態(tài)下,BBB完整性受損導(dǎo)致內(nèi)皮細(xì)胞間連接解離及基底膜降解。這進(jìn)一步引發(fā)炎性細(xì)胞(如中性粒細(xì)胞、單核/巨噬細(xì)胞)外滲及促炎介質(zhì)(IL-1β、MMP-9等)跨屏障滲透,形成神經(jīng)炎癥與繼發(fā)性腦損傷的惡性循環(huán)[39-40]近年研究表明,特定circRNA能夠通過(guò)調(diào)控BBB相關(guān)蛋白的表達(dá)和功能來(lái)調(diào)節(jié)其完整性。例如,circRNA通過(guò)海綿化特定miRNA,可以上調(diào)或下調(diào)BBB關(guān)鍵組成成分的表達(dá),如緊密連接蛋白和轉(zhuǎn)運(yùn)蛋白,從而影響 BBB 的通透性[41];circDLGAP4 通過(guò)吸附miR-143,上調(diào)HECTD1表達(dá),抑制內(nèi)皮-間質(zhì)轉(zhuǎn)化(EndMT),維持BBB的正常結(jié)構(gòu),減輕缺血性損傷[42]。此外,circRNA還參與BBB 損傷后的修復(fù)過(guò)程。研究表明,circ-FoxO3通過(guò)促進(jìn)自噬,減輕了缺血/再灌注損傷期間的BBB損傷。自噬是一種細(xì)胞自我消化過(guò)程,可以清除損傷的細(xì)胞器和蛋白質(zhì),維持細(xì)胞內(nèi)穩(wěn)態(tài)。circ-FoxO3通過(guò)抑制mTORC1活性,促進(jìn)自噬的發(fā)生,從而保護(hù)BBB的完整性[43]研究還發(fā)現(xiàn),circCCDC9可通過(guò)拮抗Notch1信號(hào)通路的活化,增強(qiáng)血腦屏障結(jié)構(gòu)穩(wěn)定性并抑制神經(jīng)細(xì)胞程序性死亡。在IS急性期模型中,其調(diào)控作用顯著改善腦血管功能損傷,提示該circRNA或可作為新型神經(jīng)保護(hù)靶點(diǎn)用于臨床干預(yù)[44]。
2.3circRNA參與腦血管新生和修復(fù)血管生成是指從現(xiàn)有的毛細(xì)血管或毛細(xì)血管后靜脈發(fā)育出新的血管。這一過(guò)程在缺氧刺激下尤為重要,是機(jī)體應(yīng)對(duì)缺血性損傷的關(guān)鍵生理機(jī)制。在IS發(fā)生后,側(cè)支循環(huán)往往無(wú)法充分提供缺血區(qū)域所需的血流,導(dǎo)致局部組織缺氧和營(yíng)養(yǎng)不足。因此,血管生成對(duì)于改善血流、為缺血區(qū)域提供氧氣和營(yíng)養(yǎng)至關(guān)重要,是卒中后恢復(fù)過(guò)程中不可或缺的一部分[45]。近年來(lái)的研究表明,circRNA在腦血管新生和修復(fù)過(guò)程中發(fā)揮著重要作用。circRNA通過(guò)多種機(jī)制促進(jìn)血管新生、內(nèi)皮細(xì)胞修復(fù)、神經(jīng)血管耦合以及干細(xì)胞治療[46]。血管內(nèi)皮生長(zhǎng)因子(VEGF)是一種典型的促血管生成因子,在血管新生中起著關(guān)鍵作用。cir-cRNA通過(guò)影響VEGF的表達(dá)來(lái)促進(jìn)新血管的形成[47]。YU等[48]研究發(fā)現(xiàn),
在氧化低密度脂蛋白(ox-LDL)誘導(dǎo)的HBMEC-IM細(xì)胞體外腦血管細(xì)胞損傷模型中表達(dá)下調(diào)。過(guò)表達(dá)circ_0003423通過(guò)競(jìng)爭(zhēng)性結(jié)合抑制miR-589-5p,從而消除后者對(duì)TET2表達(dá)的抑制,緩解ox-LDL誘導(dǎo)的腦微血管內(nèi)皮細(xì)胞損傷,增加細(xì)胞增殖與遷移能力,進(jìn)而促進(jìn)血管新生。JIANG等[49]的研究發(fā)現(xiàn),circP-DS5B通過(guò)與hnRNPL的相互作用來(lái)滅活VEGFA,從而抑制血管生成,揭示了circRNA在內(nèi)皮細(xì)胞修復(fù)中的潛在作用。神經(jīng)血管耦合是神經(jīng)元活動(dòng)與血管反應(yīng)之間的相互作用。circRNA在異常的內(nèi)皮細(xì)胞(EC)中表現(xiàn)出不同的表達(dá)模式,可能通過(guò)調(diào)節(jié)血管生成和細(xì)胞遷移相關(guān)基因的表達(dá)來(lái)影響新血管的形成和動(dòng)脈粥樣硬化的進(jìn)展[50],這為理解circRNA在神經(jīng)血管耦合中的作用提供了基礎(chǔ)。
2.4circRNA參與程序性細(xì)胞死亡方式程序性細(xì)胞死亡(programmedcelldeath,PCD)是細(xì)胞在生理或病理刺激下,通過(guò)精密調(diào)控的信號(hào)網(wǎng)絡(luò)主動(dòng)啟動(dòng)自我終止程序的過(guò)程。這一有序過(guò)程對(duì)組織穩(wěn)態(tài)維持、胚胎發(fā)育及免疫調(diào)控具有核心生物學(xué)意義[51]。根據(jù)分子機(jī)制的差異,PCD可分為凋亡、程序性壞死及自噬依賴性死亡等亞型,各亞型在調(diào)控網(wǎng)絡(luò)與病理結(jié)局上具有顯著異質(zhì)性[52]。其中,凋亡作為高度保守的基因編程性死亡方式,以染色質(zhì)固縮、核碎裂、胞膜出泡及DNA 特征性片段化為典型形態(tài)標(biāo)志[51]。其信號(hào)傳導(dǎo)主要依賴兩條核心通路:(1)外源性通路由細(xì)胞膜死亡受體(如Fas/CD95)與配體結(jié)合觸發(fā),募集銜接蛋白(如FADD)形成死亡誘導(dǎo)信號(hào)復(fù)合體(DISC),進(jìn)而激活Caspase-8/10;(2)內(nèi)源性通路由線粒體膜電位崩潰引發(fā)細(xì)胞色素C釋放,與Apaf-1及Caspase-9形成凋亡體復(fù)合物。兩條通路最終匯聚于Caspase-3/7的活化,執(zhí)行不可逆的細(xì)胞解體程序[2.53]。在IS 發(fā)生時(shí),促凋亡蛋白 Bax和裂解型Caspase-3(C-caspase-3)的表達(dá)上調(diào),而抗凋亡蛋白Bcl-2的表達(dá)下調(diào)。這種協(xié)同作用激活了線粒體依賴性凋亡途徑,促使神經(jīng)元發(fā)生程序性死亡。具體而言,ROS的過(guò)量生成導(dǎo)致DNA損傷和線粒體膜電位( ΔΨm) 的崩潰,進(jìn)而觸發(fā)細(xì)胞色素C的釋放,激活Caspase級(jí)聯(lián)反應(yīng),啟動(dòng)不可逆的凋亡程序。半影區(qū)的細(xì)胞凋亡似乎是可逆的,因此發(fā)現(xiàn)可以抑制細(xì)胞凋亡的新靶點(diǎn)成為減輕卒中損傷的重要任務(wù)之一[51,54]。在 AIS 中,CircOGDH 通過(guò)海綿吸附特定miRNA,抑制促凋亡信號(hào),降低Bax和Caspase-3的表達(dá),同時(shí)上調(diào)抗凋亡蛋白Bcl-2,從而減輕神經(jīng)元凋亡,發(fā)揮保護(hù)作用[55]。此外,在腦源性內(nèi)皮細(xì)胞的OGD/R模型(bEnd.3)及tMCAO小鼠中,過(guò)表達(dá)circHIPK3可通過(guò)circHIPK3/miR-148b-3p/CDK5R1/SIRT1 信號(hào)通路促進(jìn) SIRT1表達(dá),進(jìn)而抑制細(xì)胞凋亡和線粒體功能障礙。綜上,深入解析凋亡調(diào)控網(wǎng)絡(luò)并篩選新型抗凋亡靶點(diǎn),對(duì)于減輕卒中后神經(jīng)損傷具有重要意義[56]
2.5circRNA參與神經(jīng)再生和神經(jīng)保護(hù)神經(jīng)再生與神經(jīng)保護(hù)是IS后功能恢復(fù)的核心環(huán)節(jié)。神經(jīng)再生涉及神經(jīng)前體細(xì)胞(neural progenitor cells,NPCs)的增殖與分化、軸突重塑、突觸可塑性增強(qiáng)以及神經(jīng)血管耦合的重建。神經(jīng)保護(hù)則通過(guò)抑制神經(jīng)元凋亡、減輕氧化應(yīng)激和炎癥反應(yīng)等機(jī)制維持神經(jīng)元存活與功能[28.41]。近年研究表明,circRNA 通過(guò)多種機(jī)制在神經(jīng)再生與保護(hù)中發(fā)揮重要作用,為卒中后腦修復(fù)提供了新視角。研究揭示,circCCDC9過(guò)表達(dá)時(shí),可抑制Notch通路中Notch1、NICD及Hes1的表達(dá),進(jìn)而減輕I/R損傷神經(jīng)元的凋亡,這表明circ-CCDC9通過(guò)調(diào)控Notch信號(hào)通路對(duì)神經(jīng)元I/R損傷具有改善作用[44]。在缺血再灌注損傷的神經(jīng)元中,circUCK2通過(guò)靶向并抑制
的活性,進(jìn)而上調(diào)GDF11的表達(dá),激活TGF- ?{β/ Smad3信號(hào)通路,從而增強(qiáng)細(xì)胞存活率并減輕OGD/R誘導(dǎo)的損傷[57]。最近一份報(bào)告發(fā)現(xiàn), hsa-circ-0078299 和FXN或可作為IS的潛在生物標(biāo)志物,有助于實(shí)現(xiàn)神經(jīng)保護(hù)及促進(jìn)卒中后的恢復(fù)[58]
3circRNA作為IS治療靶點(diǎn)的潛力和展望
近年來(lái),隨著高通量測(cè)序技術(shù)的不斷發(fā)展,人們對(duì)circRNA的了解也不斷深人。既往研究雖未能對(duì)circRNA在IS發(fā)生發(fā)展中的作用機(jī)制進(jìn)行統(tǒng)一表征和權(quán)威論證,但相關(guān)研究確實(shí)為circRNA在IS后調(diào)節(jié)細(xì)胞凋亡、血管新生、炎癥反應(yīng)和神經(jīng)保護(hù)等方面的多種生物學(xué)功能提供了有力證據(jù),并表明其在這一過(guò)程中起重要作用。因此,circRNA可被視為IS后潛在的診斷生物標(biāo)志物和腦血管保護(hù)的新型治療靶標(biāo)。盡管circRNA在IS中的作用機(jī)制研究仍處于初級(jí)階段,但隨著眾多學(xué)者的廣泛關(guān)注,其已成為該領(lǐng)域的新興研究熱點(diǎn)。然而,目前大多數(shù)研究數(shù)據(jù)源自細(xì)胞實(shí)驗(yàn)和動(dòng)物模型,從基礎(chǔ)理論到臨床試驗(yàn),再到診療方法的廣泛應(yīng)用,仍需經(jīng)歷漫長(zhǎng)且復(fù)雜的轉(zhuǎn)化過(guò)程。未來(lái)需要對(duì)circRNA在不同細(xì)胞類型和不同疾病階段的表達(dá)模式和功能特性進(jìn)行更深入的研究探索[59],以便更好地理解其在IS的作用。
參考文獻(xiàn)
[1] GBD 2O21 Diseases and Injuries Collaborators.Global incidence,prevalence,yearslived withdisability (YLDs),disability-adjustedlife-years(DALYs),and healthy life expectancy(HALE)for 371 diseases and injuries in 2O4 countries and territories and 811 subnational locations,199O-2021:a systematic analysis for the Global Burden of Disease Study 2O21[J]. Lancet, 2024,403(10440):2133-2161.
[2] CANDELARIO-JALIL E,DIJKHUIZENRM,MAGNUST.Neuroinflammation,stroke,blood-brainbarrier dysfunction,and imaging modalities[J]. Stroke, 2022,53(5) :1473-1486.
[3] VAN DER STEEN W, VAN DE GRAAF R A, CHALOS V,et al. Safety and efficacy of aspirin,unfractionated heparin,both,or neither during endovascular stroke treatment(MR CLEAN-MED):an open-label, multicentre,randomised controlled trial[J].Lancet, 2022,399(10329) :1059-1069.
[4] LONG F,LI L,XIE CB,et al. Intergenic circRNA Circ_OOO7379 inhibits colorectal cancer progression by modulating miR-32Oa biogenesis in a KSRP-dependent manner[J]. Int JBiol Sci,2023,19(12) :3781-3803.
[5] LI B,BAI W W,GUO T,et al. Statins improve cardiac endothelial function to prevent heart failure with preserved ejection fraction through upregulating circRNARBCK1[J]. Nat Commun,2024,15(1):2953.
[6] SIRACUSA C,SABATINO J,LEOI,et al.Circular RNAs in ischemic stroke :biological role and experimental models[J].Biomolecules,2023,13(2):214.
[7] ZHANGX,WAN MY,MINXL,et al. Circular RNA as biomarkers for acute ischemic stroke:a systematic review and meta-analysis[J].CNS Neurosci Ther, 2023,29(8):2086-2100.
[8] LIU C X, CHEN L L. Circular RNAs: characterization, cellular roles,and applications[J].Cell,2022,185 (12):2016-2034.
[9] NIELSEN AF, BINDEREIF A, BOZZONI I,et al. Best practice standards for circular RNA research[J]. Nat Methods,2022,19(10) :1208-1220.
[10] ZHANG J,HOU L, ZUO Z,et al. Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long[J]. Nat Biotechnol,2021,39(7) :836-845.
[11] CHEN L,SHAN G. circRNA in cancer: fundamental mechanism and clinical potential[J].Cancer Lett, 2021,505:49-57.
[12] LIUY,LIU X,LINC,et al. Noncoding RNAs regulate alternative splicing in Cancer[J].JExp Clin Cancer Res,2021,40(1) :11.
[13] ZHOU R M,SHI L J,SHAN K,et al. Circular RNAZBTB44 regulates the development of choroidal neovascularization[J].Theranostics,2020,10(7):3293- 3307.
[14] HUANG A,ZHENG H,WU Z,et al. Circular RNAprotein interactions:functions,mechanisms,and identification[J]. Theranostics,2020,10(8):3503-3517.
[15] MECOZZI N, VERA O,KARRETHF A. Squaring the circle: circRNAs in melanoma[J]. Oncogene,2021,40 (37) :5559-5566.
[16] CHENRX,CHEN X,XIA L P,et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis[J]. Nat Commun,2019,10(1) :4695.
[17] WANG Y,LIU J,MA J, et al.Exosomal circRNAs : biogenesis,effect and application in human diseases [J]. Mol Cancer,2019,18(1) :116.
[18] LI J,MA M,YANG X, et al. Circular HER2 RNA positive triple negative breast cancer is sensitive to Pertuzumab[J]. Mol Cancer,2020,19(1) :142.
[19] 高原,周川孟,伍華燕,等.circHERC4_041通過(guò)編碼 蛋白質(zhì)抑制心肌成纖維細(xì)胞纖維化表型作用[J].中 國(guó)生物化學(xué)與分子生物學(xué)報(bào),2025,41(3):393-403.
[20] LI C,SUN T,JIANG C. Recent advances in nanomedicines for the treatment of ischemic stroke[J].Acta Pharm Sin B,2021,11(7) :1767-1788.
[21] AN H,ZHOU B,JI X. Mitochondrial quality control in acute ischemic stroke[J].JCereb Blood Flow Metab, 2021,41(12) :3157-3170.
[22] WALTER K. What is acute ischemic stroke? [J]. JAMA,2022,327(9) :885.
[23] CHEN W, ZHANG Y, ZHAI X, et al. Microglial phagocytosis and regulatory mechanisms after stroke[J]. J Cereb BloodFlow Metab,2022,42(9):1579-1596.
[24] HUANG G,ZANGJ,HEL,et al. Bioactive nanoenzyme reverses oxidative damage and endoplasmic reticulum stress in neurons under ischemic stroke[J]. ACS Nano,2022,16(1) :431-452.
[25] AJOOLABADY A,WANG S, KROEMER G,et al. Targeting autophagy in ischemic stroke : from molecular mechanisms to clinical therapeutics[J]. Pharmacol Ther,2021,225:107848.
[26] DUM,WUC,YUR,et al. A novel circular RNA,circIgfbp2,links neural plasticity and anxiety through targeting mitochondrial dysfunction and oxidative stress-induced synapse dysfunction after traumatic brain injury [J].Mol Psychiatry,2022,27(11) :4575-4589.
[27] TUO Q Z,ZHANG S T,LEI P. Mechanisms of neuronal cell death inischemic stroke and their therapeutic implications[J]. Med Res Rev,2022,42(1) :259-305.
[28] WANG G T, HAN B, SHEN L,et al. Silencing of circular RNA HIPK2 in neural stem cells enhances functional recovery following ischaemic stroke[J].EBioMedicine,2020,52:102660.
[29] PARK J, KIM J Y, KIM Y R, et al. Reparative system arising from CCR2(+)monocyte conversion attenuates neuroinflammation following ischemic stroke[J]. Transl Stroke Res,2021,12(5) :879-893.
[30] NI X C,WANG HF,CAI Y Y,et al.Ginsenoside Rb1 inhibits astrocyte activation and promotes transfer ofastrocytic mitochondria to neurons against ischemic stroke[J].RedoxBiol,2022,54:102363.
[31] WANG D,LIU F,ZHU L,et al. FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/ macrophages[J].JNeuroinflammation,2O20,17(1): 257.
[32] LIU M,XU Z,WANGL,et al.Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte[J]. JNeuroinflammation,2020,17(1) :270.
[33] SHAN Y,,TAN S,LIN Y,et al.The glucagon-like peptide-1 receptor agonist reduces inflammation and blood-brain barrier breakdown in an astrocyte-dependent manner in experimental stroke[J].JNeuroinflammation,2019,16(1) :242.
[34] HAN B,ZHANG Y,ZHANG Y,et al. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke[J]. Autophagy,2018,14 (7) :1164-1184.
[35]PENG X, JING P,CHEN J,et al.The role of circular RNA HECTD1 expression in disease risk,disease severity,inflammation,and recurrence of acute ischemic stroke[J]. JClin Lab Anal,2019,33(7) :e22954.
[36] YANG L,HAN B, ZHANG Z, et al. Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models[J]. Circulation,2020,142(6): 556-574.
[37]ZHU X,DING J,WANG B,et al. Circular RNA DLGAP4 is down-regulated and negatively correlates with severity,inflammatory cytokine expresson and pro-inflammatory gene miR-143 expression in acute ischemic stroke patients[J].Int JClin Exp Pathol,2019,12 (3):941-948.
[38] ZHAO Z,NELSON AR, BETSHOLTZ C, et al. Establishment and dysfunction of the blood-brain barrier[J]. Cell,2015,163(5) :1064-1078.
[39] OBERMEIER B,DANEMAN R,RANSOHOFF R M. Development,maintenance and disruption of the bloodbrain barrier[J].Nat Med,2013,19(12):1584-1596.
[40] UN P,HAMBLIN MH, YIN K J. Non-coding RNAs in theregulation of blood-brain barrier functions in central nervous system disorders[J].Fluids Barriers CNS, 2022,19(1) :27.
[41] LIUM,LIU X,ZHOU M,et al.Impact of circRNAs on ischemic stroke[J]. Aging Dis,2022,13(2):329- 339.
[42] BAIY,ZHANGY,HANB,et al.Circular RNADLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity[J].JNeurosci,2018,38(1) :32-50.
[43] YANG Z,HUANG C,WEN X,etal.Circular RNA circ-FoxO3 attenuates blood-brain barrier damage by inducing autophagy during ischemia/reperfusion[J]. Mol Ther,2022,30(3) :1275-1287.
[44] WUL,XU H,ZHANG W,et al. Circular RNA circCCDC9 alleviates ischaemic stroke ischaemia/reperfusion injury via the Notch pathway[J].JCell Mol Med, 2020,24(24) :14152-14159.
[45] FANG J, WANG Z, MIAO C Y. Angiogenesis after ischemic stroke[J]. Acta Pharmacol Sin,2023,44(7) : 1305-1321.
[46] XU G,LIU G, WANG Z, et al. Circular RNAs: promising treatment targets and biomarkers of ischemic stroke [J].Int JMol Sci,2023,25(1):178.
[47] 曾名望,鐘瑞蓬,藍(lán)青海,等.述非編碼RNA在缺血 性腦卒中的作用機(jī)制研究進(jìn)展[J].中風(fēng)與神經(jīng)疾病 雜志,2022,39(12):1133-1136.
[48] YUH,PANYX,DAI MM,et al.Circ_O003423 alleviates ox-LDL-induced human brain microvascular endothelialcellinjuryvia the miR-589-5p/TET2 network [J].Neurochem Res,2021,46(11) :2885-2896.
[49] JIANGZZ,JIANGYG.CircularRNA CircPDS5B impairs angiogenesis following ischemic stroke through its interaction with hnRNPL to inactivate VEGF-A[J]. Neurobiol Dis,2023,181:106080.
[50] JIN TY,WANG HY,LIU YL,et al.Circular RNAs:regulators of endothelial cell dysfunction in atherosclerosis[J].JMol Med,2024,102(3):313-335.
[51] BERTHELOOT D,LATZ E,F(xiàn)RANKLIN BS. Necroptosis,pyroptosis and apoptosis:an intricate game of cell death[J]. Cell Mol Immunol,2021,18(5): 1106- 1121.
[52] NEWTON K,STRASSER A,KAYAGAKI N, et al. Cell death[J].Cell,2024,187(2):235-256.
[53] ESKANDARI E,EAVES C J. Paradoxical rolesof caspase-3 in regulating cell survival,proliferation,and tumorigenesis[J].JCell Biol,2022,221(6): e202201159.
[54] RADAK D,KATSIKI N,RESANOVIC I,et al.Apoptosisand acute brain ischemia in ischemic stroke[J]. Curr Vasc Pharmacol,2017,15(2) :115-122.
[55] LIU Y,LIY,ZANG J,et al.CircOGDH is a penumbra biomarker and therapeutic target in acute ischemic stroke[J]. Circ Res,2022,130(6) :907-924.
[56] CHEN G Z,SHAN XY,LI L,et al. circHIPK3 regulates apoptosis and mitochondrial dysfunction induced by ischemic stroke in mice by sponging miR-148b-3p via CDK5R1/SIRT1[J]. Exp Neurol,2022,355:114115.
[57] CHEN WH,WANG H,F(xiàn)ENGJ,et al. retraction notice to:overexpression of circRNA circUCK2 attenuates cell apoptosis in cerebral ischemia-reperfusion injury via miR-125b-5p/GDF11 signaling[J].Mol Ther Nucleic Acids,2024,35(4) :102388.
[58] SILVAPW,M SHIMON SM,DE BRITOL M,et al. Novel insights toward human stroke-related epigenetics : circular RNA and its impact in poststroke processes [J].Epigenomics,2020,12(22):1957-1968.
[59] WUW,ZHANGJ,CAO X,et al. Exploring the cellularlandscape of circular RNAs using full-length singlecell RNA sequencing[J]. Nat Commun,2022,13(1): 3242.
(收稿日期:2025-02-12 修回日期:2025-03-06)(編輯:梁明佩)