(1.長江大學園藝園林學院,湖北 荊州 434025;2.黃岡師范學院生命科學與工程學院,湖北 黃州 438000)
摘要:利用1對兼并引物,從核桃(Juglans regia)中克隆得到苯丙氨酸解氨酶(PAL)基因cDNA片段,并命名為JrPAL,GenBank登錄號為AY747676#65377;JrPAL長866bp,編碼289個氨基酸#65377;通過核苷酸和蛋白質序列多重比較,發現JrPAL與其他植物的PAL基因高度同源#65377;JrPAL編碼的蛋白質序列包含與水稻#65380;玉米PAL蛋白質相同的脫氨基位點和催化活性位點#65377;PAL系統進化樹表明,JrPAL與喬木類植物的PAL基因聚類關系最近#65377;克隆JrPAL,可為利用基因工程技術調控核桃黃酮化合物的代謝提供基因資源#65377;
關鍵詞:核桃;苯丙氨酸解氨酶基因;基因克隆;序列分析
中圖分類號:S664.1;Q785文獻標識碼:A文章編號:0439-8114(2008)06-0622-03
Molecular Cloning and Sequence Analysis of A Phenylalanine Ammonia-lyase Gene from Juglans regia
WANG Yan1, ZHANG Feng-xia1,ZHU Jun1,LI lin-ling2, XU Feng1,CHENG Shui-yuan2
(1.College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China;
2. College of Life Science and Engineering, Huanggang Normal University, Huangzhou 438000, Hubei, China)
Abstract: A phenylalanine ammonia-lyase (PAL) gene cDNA was cloned from Juglans regia using a pair of degenerated primers. The PAL cDNA fragment of J. regia (designated as JrPAL) was 866 bp length and it encoded a 289 amino acid protein. JrPAL was found to have extensive homology with those of other plant PAL genes via multiple alignments. The deamination sites and catalytic active sites in PAL protein of Oryza sativa and Zea mays were also found in JrPAL. Phylogenetic tree analysis revealed that JrPAL had closer relationship with PALs from arbor plants than from other plants. JrPALwas a useful tool to study the regulation of flavonoid metabolism in J. regia.
Key words: Juglans regia; JrPAL; molecular cloning; sequence analysis
類黃酮與酚類物質是植物體內的主要次生代謝產物,其在植物體內的積累受到眾多環境因子的影響[1]#65377;目前,黃酮生物合成途徑研究得很清楚[2],已經鑒定和分離出黃酮合成過程中的各種酶及基因,該途徑的第一個反應是苯丙氨酸解氨酶(PAL,EC 4.3.1.5)催化苯丙氨酸生成反式肉桂酸,苯丙氨酸解氨酶是苯丙氨酸代謝途徑的關鍵酶#65377;由于PAL在類黃酮#65380;木質素#65380;植物抗霉素生物合成代謝途徑中具有重要的作用,有關研究已有許多報道[3-6]#65377;大量研究表明不同環境因子例如光照#65380;低溫#65380;真菌感染#65380;機械創傷都會對PAL酶活性的表達起著調控作用[6-8]#65377;PAL基因已從裸子植物#65380;草本植物和木本植物等多種植物中克隆得到[9-16],基因拷貝數分析表明,除了馬鈴薯和火炬松之外(馬鈴薯含有40多個PAL同源基因#65380;火炬松只含有一個PAL基因)[17,18],PAL基因屬于一類小的基因家族,不同PAL基因家族成員的表達模式不同#65377;在大豆中,PAL7基因主要在根#65380;莖和葉中表達,PAL2基因在根#65380;莖和花瓣中表達,而PAL3基因只在根中檢測到有表達#65377;環境因子誘導基因表達模式研究發現,這3種基因都是受機械損傷誘導表達,PAL1基因和PAL3基因主要響應真菌感染,PAL7基因和PAL2基因主要被光照誘導表達[19]#65377;在歐芹中,發現至少有4種PAL同源基因,其中一個響應紫外光輻射[10],PAL基因除了表達模式的研究外,在幾種植物種中還對其基因啟動子區域進行了鑒定#65377;研究表明,Box1(Box L)和Box2(Box P)序列在苯丙烷代謝途徑相關基因的啟動子序列中高度保守[11,12]#65377;我國核桃(Juglans regia)資源豐富,目前人們除利用堅果#65380;木材外,對核桃葉及外果皮很少利用#65377;據分析,核桃葉中含有高抗炎作用的黃酮類化合物等多種生物化學成分[20]#65377;然而,目前在核桃中還未見黃酮類化合物合成代謝的分子生物學研究,對于核桃的PAL基因在類黃酮和花青素含量積累過程中的具體作用還知之甚少#65377;因此,本文對核桃PAL基因的克隆#65380;序列分析#65380;分子進化以及環境影響方面進行了研究,以期利用基因工程來調控核桃葉的類黃酮積累,加快對核桃的綜合利用與深度開發#65377;
1材料與方法
1.1植物材料和試劑
核桃葉片采摘于長江大學園藝園林學院植物園#65377;試驗所用的引物由上海生物工程有限公司(Shanghai Sangon Biotechnology Company China.)合成,DNA測序委托大連TaKaRa公司完成#65377;High-purity PCR product purification kit購自上海生物工程有限公司,pMD18-Tvector kit購自香港Invitrogen公司,AMV反轉錄酶#65380;dNTPs#65380;RNasin 和 Taq DNA 聚合酶購自美國Promega(Madison,WI,USA)公司#65377;
1.2RNA的提取
參照Johnson等的方法[21]提取核桃葉的總
RNA,瓊脂糖凝膠電泳和分光光度計分析總RNA的純度和濃度,保存于-80℃備用#65377;
1.3cDNA 克隆
取核桃葉總RNA 1 μg用于cDNA第一鏈的合成,具體操作步驟參照AMV Reverse Transcriptase kit說明書#65377;根據已知PAL基因序列設計兼并引物,上游引物PALsP:5′-GC(A/T/C) TC(T/C/G) GGT GAT (C/T)T(A/G) GT(T/C)-3′;下游引物PALaP:5′-ACA TCT TGG TT(A/G) TG(T/C) TG
C TC-3′#65377;以合成的cDNA第一鏈為模板,擴增核桃PAL基因保守序列#65377;PCR參數為94℃#65380;1 min,48℃#65380;1 min,72℃#65380;1 min,35個循環;72℃延伸10 min#65377;1%瓊脂糖凝膠電泳檢測PCR產物,并用The high-purity PCR product purification kit回收PCR產物#65377;然后,參照pMD18-Tvector kit試劑說明書,將回收片段與pMD18-T載體連接,轉化,測序#65377;
1.4生物信息學分析
借助DNAstar對PAL基因序列進行序列拼接,在線分析蛋白質和DNA同源性分析(http://www.ncbi.nlm.nih.gov/BLAST/)#65377;然后利用Vector NT1 6 進行PAL基因多序列比對,CLUSTAL W 1.83對夾竹桃PAL基因和其他植物已知PAL基因的序列進行多聚分析;通過MEGA 3.1軟件構建了PAL基因的分子進化樹,并進行Bootstrap檢測[22]#65377;
2結果與分析
2.1JrPAL cDNA片段克隆
試驗通過RT-PCR方法克隆得到的核桃PAL cDNA片段命名為JrPAL(Genbank登錄號為AY747676),總長度為866 bp,G/C含量為45%,編碼289個氨基酸的蛋白質#65377;核苷酸序列比對顯示,該片段與其他植物PAL基因序列相似性大于80%(表1)#65377;JrPAL核苷酸序列與海桐花(Pittosporum tobira)PAL基因同源性為84%,與甜櫻桃(Prunus avium)PAL基因為82%, 與大豆(Glycine max)#65380;楊樹(Populus kitakamiensis#65380;P. balsamifera#65380;P. tremuloides)和花葉木薯(Manihot esculenta)為81%,與豌豆(Pisum sativum)#65380;葡萄(Vitis vinifera)#65380;菜豆(Phaseolus vulgaris)和檸檬(Citrus limon)均為80%,說明JrPAL是核桃PAL基因家族中成員之一#65377;并且不同物種的PAL基因同源性比較結果表明,PAL基因在分子進化過程中可能有一個極為保守的區域[16]#65377;

2.2JrPAL蛋白質鑒定
根據JrPAL序列推測JrPAL蛋白質序列,結果見圖1#65377;利用Computer pI/Mw軟件分析推測NoPAL蛋白質等電點和分子量分別為5.7和31 kDa,JrPAL多肽與其他植物中PAL氨基酸序列之間相似性大于90%(圖1)#65377;JrPAL氨基酸序列與海桐花同源性為93%,與花葉木薯#65380;茶樹(Camellia sinensis)均為90%,與歐芹(Petroselinum crispum)#65380;甜櫻桃#65380;萵苣(Lactuca sativa)#65380;胡蘿卜(Daucus carota)為91%,與煙草(Nicotiana tabacum)為90%,說明JrPAL與其他植物中PAL蛋白質的序列和功能極為相似,如在JrPAL序列中,包含L5,V6,L56和A57等脫氨基氨基酸殘基(圖1),它們催化活性位點N60#65380;G61#65380;N180#65380;D181#65380;N182#65380;H196#65380;HNQDV (285-289),這些活性位點與水稻(Oryza sativa)和玉米(Zea mays)中報道的相同[11,23],說明JrPAL是PAL蛋白質家族成員之一#65377;

2.3分子進化分析
選用細菌(Pseudomonas syringae)組氨酸解氨酶作為PAL進化樹分支參考,構建JrPAL與其他植物PAL蛋白質序列之間的進化樹#65377;結果顯示3個主要的特征(圖2)#65377;所有的PAL蛋白質,無論它們是裸子植物或者被子植物#65380;是雙子葉植物還是單子葉植物,都從一個共同的祖先進化而來,它們具有相同的信號序列和保守元件#65377;另外,可以把PAL基因序列分為幾種不同的物種特異性家族#65377;例如,核桃與其他喬木如海桐花和茶樹聚成一類,說明核桃與喬木物種之間的親緣關系更近(圖2)#65377;由圖2可見,裸子植物包括松樹(Pinus sylvestris#65380;P. taeda#65380;P. pinaster)和銀杏(Ginkgo biloba)歸為一類,低等植物中的苔蘚植物如溪苔(Pellia epiphylla)#65380;水韭(Isoetes lacustris)#65380;長白石杉(Huperzia lucidula)和石松(Lycopodium tristachyum)歸為一類#65377;而諸如水稻和小麥(Triticum aestivum)的單子葉植物歸為一類,雙子葉植物如甜菜(Beta vulgaris)#65380;矮牽牛(Petunia hybrida)#65380;馬鈴薯(Solanum tuberosum)#65380;煙草#65380;番薯(Ipomoea nil)#65380;胡蘿卜和萵苣中的PAL蛋白質可歸為另一類#65377;再如蘭花(Bromheadia finlaysoniana)和擬南芥(Arabidopsis thaliana)等與其他物種之間具有很近的遺傳距離(圖2)#65377;因此,可以認為JrPAL與喬木具有較近的親緣關系,它們具有共同的進化始祖,在氨基酸序列和保守元件結構上極為相似#65377;
3小結與討論
本研究首次從核桃中克隆得到其PAL基因cDNA片段,并將其命名為JrPAL,多序列比對結果顯示,JrPAL與其他植物的PAL基因有較高的同源性,并含有相似的蛋白質保守活性位點#65377;核桃苯丙氨酸解氨酶是花青素生物合成代謝途徑中的關鍵酶之一#65377;已有研究表明PAL基因與植物微生物#65380;光誘導和損傷誘導等有關,近年來發現PAL基因在植物黃酮合成途徑中

也具有重要作用[24-26]#65377;開展植物黃酮生物合成途徑的研究,不僅是在模式植物,在一些木本植物如核桃中同樣有利于更好的揭示植物次生代謝途徑在黃酮積累中的調控#65377;由于核桃葉類黃酮所具有的生物效能,因此核桃次生代謝過程中相關基因的克隆和鑒定對其生物工程改良黃酮含量具有很大的推動作用#65377;目前我們對JrPAL全長cDNA序列克隆和功能鑒定的工作正在展開#65377;
參考文獻:
[1]NAKAZAWA A, NOZUE M, YASUDA H. Expression pattern and gene structure of phenylalanine mmonia-lyase in Pharbitis nil [J]. J Plant Res,2001,114:323-328.
[2]VAN DER MEER I M, STUITJE A R, MOL J N M. Regulation of general phenylpropanoid and flavonoid gene expression [A]. In: Verma DPS (ed) Control of Plant Gene Expression [C]. CRC Press, Boca Raton,FL,1993. 125-155.
[3]KUMAR A, ELLIS B. The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution [J]. Plant Physiol,2001,127:230-239.
[4]KOSTENYUK I A,ZON J,BURNS J K. Phenylanine ammonia lyase gene expression during abscission in citrus [J]. Physiol Plant,2002,116:106-112.
[5]LAFUENTE M T, ZACARIAS L, MARTINEZ-TELLEZ M A, et al. Phenylalanine ammonia-lyase and ethylene in relation to chilling injury as affected by fruit age in citrus [J]. Postharvest Biol Tech,2003,29:308-317.
[6]CAMPOS R, NONOGAKI H, SUSLOW T, et al. Isolation and characterization of a wound inducible pheylalanine ammonia-lyase gene (LsPAL1) from Romaine lettuce leaves [J]. Physiol Plant,2004,121:429-438.
[7]KUHN D N, CHAPPELL J, BOUDET A, et al. Induction of phenylalanine ammonia-lyase and 4-coumarates: CoA ligase mRNAs in cultured plant cells by UV light or fungal elicitor [J]. Proc Natl Acad Sci USA,1984,81:1102-1106.
[8]LEYVA A, JARILLO J A, SALINAS J, et al. Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of Arabidpsis thaliana in a light-dependent manner [J]. Plant Physiol,1995,108: 39-46.
[9]CRAMER C L, EDWARDS K, DRON M, et al. Phenylalanine ammonialyase gene organization and structure [J]. Plant Mol Biol,1989, 12:367-383.
[10]LOIS R, DIETRICH A, HAHLBROCK K, et al. A phenylalanine ammonia-lyase gene from parsley structure, regulation and identification of elicitor and light responsive cis-acting elements [J]. EMBO J,1989,8:1641-1648.
[11]MINAMI E, OZEKI Y, MATSUOKA M, et al. Structure and some characterization of the gene for phenylalanine ammonia-lyase from rice plants [J]. Eur J Biochem,1989,
185:19-25.
[12]OHL S, HEDRICK S A, CHORY J, et al. Functional properties of a phenylalanine ammonia-lyase promoter from Arabidopsis [J].Plant Cell,1990,2:837-848.
[13]LEE S W, ROBB J, NAZAR R N. Truncated phenylalanine ammonia-lyase expression in tomato (Lycopersicum esculentum) [J].J Biol Chem, 1992,267:11824-11830.
[14]SUBRAMANIAM R, REINOLD S, MOLITOR E K, et al. Structure, inheritance, and expression of hybrid poplar (Populus trichocarpa × Populus deltoids) phenylalanine ammonia-lyase genes [J]. Plant Physiol, 1993,102:71-83.
[15]ZHU Q, DABI T, BEECHE A, et al. Cloning and properties of a rice gene encoding phenylalanine ammonia-lyase [J]. Plant Mol Biol, 1995,29:535-550.
[16]FUKASAWA-AKADA T, KUNG S D, WATSON J C. Phenylalanine ammonia-lyase gene structure, expression, and evolution in Nicotiana [J]. Plant Mol Biol,1996,30:711-722.
[17]JOOS H J, HAHLBROCK K. Phenylalanine ammonia-lyase in potato (Solanum tuberosum L.). Genomic complexity, structural comparison of two selected genes and modes of expression [J]. FEBS,1992,204:621-629.
[18]WHETTEN R W, SEDEROFF R R. Phenylalanine ammonia-lyase from loblolly pine purification of the enzyme and insolation of complementary DNA clones [J]. Plant Physiol,1992, 98:380-386.
[19]LIANG X, DRON M, CRAMER C L, et al. Differential regulation of phenylalanine ammonia-lyase genes during plant development and by environmental cues [J]. J Biol Chem,1989, 264:14486-14492.
[20]翟梅枝,張鳳云,高紹棠,等. 核桃葉總黃酮提取方法研究[J]. 陜西林業科技,2000(1): 5-8.
[21]JOHNSON W. A simple and efficient Method for Isolating RNA from pine tree [J]. Plant Physiol,1997,113(1):176-179.
[22]KUMAR S, TAMURA K,NEI M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment [J]. Briefings in Bioinformatics,2004,5:150-163.
[23]ROSLER J, KREKEL F,AMRHEIN N, et al. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity [J]. Plant Physiol, 1997,113(1):175-179.
[24]PAUL A, TONY A, JEREMY J. Characterization of a phenylalanine ammonia-lyase multigene family in Trifolium subterraneum [J]. Gene,1994,138(1):87-92.
[25]HOLTON T A, CORNISH E C. Genetics and biochemistry of anthocyanin biosynthesis [J]. Plant Cell,1995,7:1071-1083.
[26]ALOKAM S,LI Y,LI W,et al. Photoregulation of phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS) in the accumulation of anthocyanin in alpine and prairie ecotypes of Stellaria longipes under varied R/FR [J]. Physiol Plant,2002,116:531-538.