摘 要: 蚜蟲是以植物韌皮部汁液為食的專性寄生昆蟲,杏樹春生新梢易受桃蚜等蚜蟲侵染,桃蚜在新梢上迅速繁殖并聚集,汲取韌皮部富含糖分的汁液,通常引起杏葉卷曲變形,抑制新梢生長。為了解桃蚜侵染對杏幼葉超微結構產生的影響,以采集被蚜蟲寄生的幼葉,經過固定、脫水和包埋,做成厚度60 nm超薄切片,采用透射電子顯微鏡進行觀察。結果表明,受桃蚜侵染幼葉中有少數細胞表現超微結構變化:細胞過度液泡化以致液泡占據了細胞絕大部分內部空間,同時,細胞質過度降解,細胞器減少,細胞核收縮,核質中均勻地積累嗜鋨性細顆粒物質致使細胞核電子染色加深,染色質顆粒消失,細胞壁增生導致細胞變形。根據觀察結果得出結論,桃蚜侵染杏幼葉能引起幼葉局部細胞發生超微結構退化。
關鍵詞: 杏; 桃蚜; 葉; 超微結構
中圖分類號:S662.1 文獻標識碼:A 文章編號:1009-9980?穴2011?雪06-1050-04
Ultrastructural degeneration of part cells in young leaves of apricot caused by green peach aphids
LIU Lin
(College of Life Sciences, Linyi University, Linyi, Shandong 276005 China)
Abstract: Aphids are plant phloem-feeding insect, sucking the sugary liquids from the host plant’s vascular system. Green peach aphids (Myzus persicae) often infest the emerging shoots of apricot (Prunus armeniaca Linn.). The aphids reproduce rapidly and cause severe distortion of young leaves and inhibit the growth of the new shoots. In order to characterize the ultrastructure alterations in the infested young leaves, leaf samples were examined by means of transmission electron microscopy. Most cells in the infested young leaves were moderately vacuolated and appeared healthy, but there were a small number of cells that showed excessive vacuolation and cytoplasmic reduction. In the excessively vacuolated cell, a large vacuole occupied almost all the cell’s total volume, whereas cytoplasm was reduced to very little. The excessive cytoplasmic reduction was concomitant with nucleus deterioration. The nucleus deterioration was symptomized as nucleus shrinkage, extensive accumulation of diffusible osmiophilic compounds, and disappearance of chromatin granules. The excessive cytoplasmic reduction and the concomitant nucleus deterioration led to the subsequent cell distortion. Results suggested that the infestation of green peach aphids caused ultrastructural degeneration to a limited number of cells in the infested young leaves of apricot.
Key words: Prunus armeniaca; Green peach aphid; Leaf; Ultrastructure
蚜蟲是以植物韌皮部汁液為食的專性寄生昆蟲,具舐食習性,將一根長而具韌性的口針插入植物組織并進行化學分析以確定植物是否可食和尋找韌皮部位置[1]。口針一般沿著細胞初生壁和次生壁之間的質外體途徑行進[2],途中不停地分泌凝膠型唾液,形成包圍口針的唾液鞘,唾液鞘具有一定硬度,并具潤滑功能,便于口針進退[3]。口針在行進途中不斷迅速穿刺細胞,將少量水溶型唾液注入細胞內,然后攝取微量唾液和細胞質的混合液以對細胞進行化學分析[4]。蚜蟲將口針從細胞收回后,用凝膠型唾液將穿刺傷口封閉[3,5]。進食過程中,不斷向篩管內分泌水溶型唾液[6]。凝膠型和水溶型唾液都具有復雜的成分,其中有些成分是引起植物反應的誘發因子[7-8]。
蚜蟲引起的寄主植物反應首先是迅速反應,如蛋白質磷酸化、膜的去極化、鈣離子內流和活性氧的釋放[9],這些反應繼而活化激素依賴性的信號轉導途徑[10]。植物巧妙地調控這些信號途徑以加強防御[11],而蚜蟲則通過干擾植物防御反應和改變植物代謝過程以建立與寄主相互適應的親和關系[12]。結果,植物表現出不同水平上的變化,如碳和氮的再分配[13]、酚類物質積累[14]以及生長受抑制[13]。
桃蚜[Myzus persicae (Sulzer)]是分布十分廣泛的蚜蟲,發育快,10~20 d就完成一代的發育,1 a發生多代。桃蚜能與杏樹建立親和性關系,春天在杏樹新梢上迅速繁殖,引起杏葉嚴重變形(圖版 -A~B),抑制新梢生長。受侵染葉在超微結構水平上有什么變化?回答這個問題不僅具有生物學意義,也為杏栽培管理和蟲害預防工作提供可靠的參考。因此,我們用透射電子顯微技術揭示了桃蚜侵染杏幼葉對超微結構產生的影響。
1 材料和方法
1.1 材料
供試杏樹為栽培品種金太陽 (Prunus armeniaca Linn.),栽植于蒙山區域的坡地上 (35°26′38″ N, 117°58′45″ E)。3月底4月初新芽開始生長時,對果園用20%滅菊酯乳油3 000倍液噴霧。應試驗需要,留1個杏園不采取蚜蟲防治措施。4月中下旬,采取防治措施的杏樹新梢上沒有聚集桃蚜,新梢健康(圖版-A),而在沒有采取防治措施的杏樹新梢上桃蚜[Myzus persicae (Sulzer)]大量聚集,引起葉片變形(圖版-B)。因為幼葉受侵染是引起葉片變形的關鍵,所以本試驗采集受蚜蟲侵染的幼葉(圖版-B)作為研究材料,以未受侵染、與所采集受侵染葉發育進度接近的幼葉(圖版-A)為對照。受侵染葉和對照葉各取3個。
1.2 方法
采集的葉片立即用2% 戊二醛溶液(0.05 mol·L-1磷酸緩沖液配制,pH 6.8)在室溫下進行4 h初固定,其間將葉片切成小塊(<1 mm×1 mm)以利于固定。再用1%鋨酸溶液(0.05 mol·L-1磷酸緩沖液配制,pH 6.8)在4 ℃條件下進行4 h的后固定。在梯度10%的系列酒精中脫水,用Embed-812樹脂包埋,用超薄切片機(Leica)切厚度為60 nm的切片。切片用醋酸雙氧鈾和檸檬酸鉛雙重染色,Tecnai 12透射電子顯微鏡下觀察并照相。每葉片做3個包埋塊,每塊觀察3~5個切片。
2 結果與分析
2.1 細胞過度液泡化和細胞質過度減少
在所有對照葉切片中沒有發現不正常的細胞,而受侵染葉切片中有正常細胞也有不正常細胞,大部分細胞正常,少數細胞不正常。正常細胞表現為液泡化程度適中,每細胞含2~3個液泡,液泡較小,大小與細胞核接近,輪廓平滑,總體上液泡約占據細胞一半的空間(圖版-C);不正常細胞表現為過度液泡化和細胞質過度減少,液泡占據細胞絕大部分空間(圖-D)。不正常的細胞包括表皮細胞、葉肉細胞和維管束鞘細胞。如圖版-D所示,在過度液泡化的細胞中,有一個特別大的液泡,附近還有一些小液泡;這個大液泡占據了細胞絕大部分空間,而小液泡與大液泡融合,引起大液泡體積進一步增大;由于不斷有小液泡與大液泡融合,導致大液泡輪廓不平滑。大液內也有一些小泡。
液泡化的同時,細胞質急劇減少,殘存的少量細胞質貼著細胞壁 (圖版-D),或貼著細胞核(圖版-F)。殘存細胞質中細胞器明顯減少,表明細胞器隨著液泡化加劇而解體、消失。
2.2 過度液泡化細胞的細胞核退化
中度液泡化的細胞具有正常的細胞核,細胞核結構特征與對照葉的細胞核相同:核質電子染色淺,核仁和染色質顆粒電子染色深,因此核仁和染色質十分清晰(圖版-E)。相反,過度液泡化的細胞中,細胞核縮小,表面出現大的凹凸,核內積累嗜鋨性細顆粒物質,這種嗜鋨性的細顆粒物質量多并具有擴散性,因此核質電子染色比較均勻地加深,同時,染色質顆粒消失(圖版-F)。顯然,伴隨著過度液泡化,細胞核發生退化。
2.3 過度液泡化的細胞變形
對照葉細胞和受侵染葉的正常細胞都具較直的細胞壁 (圖版-C),相反,過度液泡化細胞的徑向壁出現彎曲(圖版-D)。彎曲程度不斷增加,進而形成折疊,導致細胞嚴重變形 (圖版-G~H)。細胞壁彎曲是因為細胞壁增生,以徑向壁最為明顯,比中度液泡化細胞的長得多,徑向壁因過度生長而折疊,引起細胞變形。變形細胞的細胞質持續減少,細胞核進一步收縮。在變形的細胞中有電子染色很深的物質,可能是蚜蟲唾液凝集物(圖版-G~H)。
3 討 論
本試驗結果表明,受桃蚜侵染的杏幼葉中有部分細胞發生退化,主要表現為細胞過度液泡化、細胞質急劇減少、染色質消失和細胞變形。因為細胞退化現象在未受蚜蟲侵染的幼葉中不存在,因此細胞退化是蚜蟲侵染所引起的。變形的細胞內細胞質持續減少,可能直到完全消失,使細胞徹底死亡。細胞變形的原因是細胞徑向壁過度生長,而壁的過度生長可能由蚜蟲唾液中的某些因子引起,蚜蟲唾液中含有與細胞壁擴展相關的酶[15]。細胞變形可能與葉片變形相關。
細胞過度液泡化和細胞質過度降解同時發生,顯然細胞質降解過程與液泡有關,液泡以某種機制吞噬了細胞質并將其分解。細胞質被液泡或自噬泡吞噬并消化是細胞自噬的主要特征[16]。在動物和酵母細胞中,常見的細胞自噬包括小自噬(microautophagy)和大自噬(macroautophagy),小自噬指液泡通過液泡膜形成內陷直接吞噬細胞質組分并將其分解[17-18],大自噬是多步驟過程,先由雙層膜包圍部分細胞質形成自噬體,自噬體自身不含水解酶,與溶酶體融合形成自噬泡后才將吞噬的細胞質分解[19-20]。在植物細胞中也有小自噬和大自噬,植物細胞小自噬和動物及酵母細胞小自噬一樣,也是液泡通過膜內陷而吞噬細胞質[21];植物細胞大自噬與動物細胞大自噬類似,不同在于植物中包圍細胞質的自噬體本身含有水解酶,自噬體形成后轉移到液泡內[22]。根據植物細胞自噬的標準判斷,蚜蟲在杏幼葉部分細胞中引起了細胞自噬。盡管本試驗還不能確定杏幼葉細胞中的自噬是大自噬還是小自噬,但可以確定細胞對自噬過程失去了控制,因此蚜蟲在杏幼葉中引起的細胞自噬具組成型特征,致使細胞質持續地減少。
蚜蟲從韌皮部汁液中獲取營養。韌皮部汁液通常含有高濃度蔗糖,但必需氨基酸不能滿足蚜蟲的需要[23],蚜蟲通過內共生γ-蛋白細菌(Buchnera aphidicola)以韌皮部汁液中的蔗糖和天冬氨酸為原料合成必需氨基酸以滿足需要[24-25],或者通過改變植物韌皮汁液的氨基酸組分來部分地滿足對必需氨基酸的需求[26-29]。桃蚜誘導杏幼葉部分細胞發生組成型細胞自噬,細胞的蛋白質組分被降解,蛋白質降解產物包含一定量的必需氨基酸。因此,桃蚜誘導杏幼葉部分細胞發生過度自噬,有利于蚜蟲獲得所必需的氨基酸,這可能是桃蚜獲取必需氨基酸的一種策略。(本文圖版見插3)
參考文獻 References:
[1] POWELL G, TOSH C R, HARDIE J. Host plant selection by aphids: behavioral, evolutionary, and applied perspectives[J]. Annu Rev Entomol, 2006, 51: 309-330.
[2] TJALLINGII W F, HOGEN-ESCH T. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals[J]. Physiol Entomol,1993,18(3): 317-328.
[3] TJALLINGII W F. Salivary secretions by aphids interacting with proteins of phloem wound responses[J]. J Exp Bot, 2006, 57(4): 739-745.
[4] MARTIN B, COLLAR J L, TJALLINGII W F, FERERES A. Intracellular ingestion and salivation by aphids may cause acquisition and inoculation of non-persistently transmitted plant viruses[J]. J Gen Virol, 1997, 78(10): 2701-2705.
[5] GIORDANENGO P, BRUNISSEN L, RUSTERUCCI C, VINCENT C, van BEL A, DINANT S, GIROUSSE C, FAUCHER M, BONNEMAIN J L. Compatible plant-aphid interactions: how aphids manipulate plant responses[J]. Comptes Rendus Biologies, 2010, 333(6-7): 516-523.
[6] WILL T, KORNEMANN S R, FURCH A C U, TJALLINGII W F, van BEL A J E. Aphid watery saliva counteracts sieve-tube occlusion: a universal phenomenon[J]. J Exp Biol, 2009, 212(20): 3305-3312.
[7] HARMEL N, L?魪TOCART E, CHERQUI A, GIORDANENGO P, MAZZUCCHELLI G,GUILLONNEAU F,De PAUW E, HAUBRUGE E, FRANCIS F. Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae[J]. Insect Mol Biol,2008,17(2): 165 -174.
[8] WILL T, van BEL A J E. Induction as well as suppression: how aphids may exert opposite effects on plant defense[J]. Plant Signal Behav, 2008, 3(6): 427-430.
[9] GARCIA-BRUGGER A,LAMOTTE O,VANDELLE E,BOURQUE S, LECOUREUX D, POINSSOT B, WENDEHENNE D, PUGIN A. Early signaling events induced by elicitors of plant defenses[J]. Mol Plant Microbe Interact, 2006, 19(7): 711-724.
[10] ARGANDO?譙A V H, CHAMAN M, CARDEMIL L, MU?譙OZ O, ZU?譙IGA G E, CORCUERA L J. Ethylene production and peroxidase activity in aphid-infested barley[J]. J Chem Ecol, 2001, 27(1): 53-68.
[11] PIETERSE C M J, DICKE M. Plant interactions with microbes and insects: from molecular mechanisms to ecology[J]. Trends Plant Sci, 2007, 12(12): 564-569.
[12] THOMPSON G A, GOGGIN F L. Transcriptomics and functional genomics of plant defense induction by phloem-feeding insects[J]. J Exp Bot, 2006, 57(4): 755-766.
[13] GIROUSSE C, MOULIA B, SILK W, BONNEMAIN J L. Aphid Infestation causes different changes in carbon and nitrogen allocation in alfalfa stems as well as different inhibitions of longitudinal and radial expansion[J]. Plant Physiol, 2005, 137(4): 1474-1484.
[14] BELEFANT-MILLER H, PORTER D R, PIERCE M L, MORT A J. An early indicator of resistance in barley to Russian wheat aphid[J]. Plant Physiol, 1994, 105(4): 1289-1294.
[15] MA Rui, CHEN Ju-lian, CHENG Deng-fa, SUN Jing-rui. The main components of aphid saliva and their roles in interaction between aphid and host plant[J]. Plant Protection, 2010, 36(1): 15-21.
馬蕊,陳巨蓮,程登發,孫京瑞. 蚜蟲唾液主要成分及其在寄主和害蟲互作中的作用[J]. 植物保護,2010, 36(1): 15-21.
[16] YORIMITSU T, KLIONSKY D J. Autophagy: molecular machinery for self-eating[J]. Cell Death Differ, 2005, 12(Suppl 2): 1542-1552. [17] KRICK R, MUEHE Y, PRICK T, BREMER S, SSCHLOTTERHOSE P, ESKELINEN E L, MILLEN J, GOLDFARB D S, THUMM M. Piecemeal microautophagy of the nucleus requires the core macroautophagy genes[J]. Mol Biol Cell, 2008, 19(10): 4492-4505.
[18] UTTENWEILER A, SCHWARZ H, NEUMANN H, MAYER A. The vacuolar transporter chaperone (VTC) complex is required for microautophagy[J]. Mol Biol Cell, 2007, 18(1): 166-175.
[19] BAHA M, TAKESHIGE K, BABA N, OHSUMI Y. Ultrastructural analysis of the autophagic process in yeast, detection of autophagosomes and their characterization[J]. J Cell Biol, 1994, 124(6): 903 -913.
[20] XIE Z, KLIONSKY D J. Autophagosome formation: core machinery and adaptations[J]. Nat Cell Biol, 2007,9(10): 1102-1109.
[21] YOSHIMOTO K, TAKANO Y, SAKAI Y. Autophagy in plants and phytopathogens[J]. FEBS Lett, 2010, 584(7): 1350-1358.
[22] BASSHAM D C. Function and regulation of macroautophagy in plants [J]. Biochim Biophys Acta, 2009, 1793(9): 1397-1403.
[23] DOUGAS A E. The nutritional quality of phloem sap utilized by natural aphid populations[J]. Ecol Entomol,1993,18(1): 31-38.
[24] DOUGLAS A E. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera[J]. Annu Rev Entomol, 1998, 43(1): 17-37.
[25] DOUGLAS A E. Phloem-sap feeding by animals: problems and solutions[J]. J Exp Bot, 2006, 57(4): 747-754.
[26] WILL T, TJALLINGII W F, TH?魻NNESSEN A, van BEL A J E. Molecular sabotage of plant defense by aphid saliva[J]. Pnas, 2007, 104(25): 10536-10541.
[27] SANDSTR?魻M J, TELANG A, MORAN N A. Nutritional enhancement of host plants by aphids - a comparison of three aphid species on grasses[J]. J Insect Physiol, 2000, 46(1): 33-40.
[28] TELANG A, SANDSTR?魻M J, DYRESON E, MORAN N A. Feeding damage by Diuraphis noxia results in a nutritionally enhanced phloem diet[J]. Entomol Exp Appl, 1999, 91(3): 403-412.
[29] VOECKEL C,WEISSER W W,BALDWIN I T. An analysis of plant-aphid interactions by different microarray hybridization strategies[J]. Mol Ecol, 2004, 13(10): 3187-3195.