李華杰
【摘要】導數是近代數學的重要基礎,是聯系初、高等數學的紐帶,它的引入為解決中學數學問題提供了新的視野,是研究函數性質、證明不等式、探求函數的極值最值、求曲線的斜率的有力工具。
【關鍵詞】導數函數曲線的斜率極值和最值導數(導函數的簡稱)是一個特殊函數,它的引出和定義始終貫穿著函數思想。新課程增加了導數的內容,隨著課改的不斷深入,導數知識考查的要求逐漸加強,而且導數已經由前幾年只是在解決問題中的輔助地位上升為分析和解決問題時的不可缺少的工具。函數是中學數學研究導數的一個重要載體,函數問題涉及高中數學較多的知識點和數學思想方法。近年好多省的高考題中都出現以函數為載體,通過研究其圖像性質,來考查學生的創新能力和探究能力的試題。本人結合教學實踐,就導數在函數中的應用作個初步探究。
有關導數在函數中的應用主要類型有:求函數的切線,判斷函數的單調性,求函數的極值,用導數證明不等式。這些類型成為近兩年最閃亮的熱點,是高中數學學習的重點之一,預計也是“新課標”下高考的重點。
一、用導數求函數的切線
例1:已知曲線y=x3-3x2-1,過點(1,-3)作其切線,求切線方程。
分析:根據導數的幾何意義求解。
解:y′=3x2-6x,當x=1時y′=-3,即所求切線的斜率為-3.故所求切線的方程為y+3=-3(x-1),即為:y=-3x.
方法提升:函數y=f(x)在點x0處的導數的幾何意義,就是曲線y=f(x)在點P(x0,y=f(x0))處的切線的斜率。既就是說,曲線y=f(x)在點P(x0,y=f(x0))處的切線的斜率是f′(x0),相應的切線方程為y-y0=f′(x0)(x-x0)。……