錢明霞++路正南++王健
摘要以中國產業部門為研究對象,基于投入產出技術分別構建需求拉動下和供給驅動下的碳排放模型,采用碳平均傳播長度(APL)指標測算產業部門之間的碳距離,衡量產業部門的碳波及效應,并區分后向碳APL和前向碳APL識別產業部門的碳波及鏈。實證分析表明,第二產業是中國能源消費碳排放的大戶,碳排放量高達165 136.884萬t,所占比例達到整個產業部門碳排放的98.23%,尤其是煉焦化工金屬產品制造業和電力燃氣及水的生產供應業,所占比例高達87.52%,其中,電力燃氣及水的生產供應業的碳排放強度最大,為2.123t/萬元。計算并對比各部門后向碳APL和前向碳APL的平均值和標準差,結果顯示前向碳APL數值較大且分散,說明在“需求拉動經濟”的政策背景下,需求拉動作用下的產業部門碳波及效應較供給驅動作用下的碳波及效應更為顯著。進一步對各部門碳供給產業和碳需求產業進行識別,發現產業系統的碳波及鏈呈現出錯綜復雜的網狀結構而非單一的線性鏈條,機械設備制造業和煉焦化工金屬產品制造業位于碳波及鏈的上游,采掘業和電力燃氣及水的生產供應業兩大部門位于碳波及鏈的末端,農林牧漁業、紡織皮革木材造紙制造業、食品制造及煙草加工業、交通運輸倉儲和郵政業等部門之間相互關聯和波及,互相轉移和吸收碳排放。因此,產業部門節能減排工作的順利實施,必須從產業系統總體的角度進行科學規劃,清楚地認識到各個產業部門在產業碳波及鏈中的功能和作用,通過縱向和橫向的溝通與競合,推動部門自身和其他部門之間的協同減排。
關鍵詞投入產出;碳排放;碳波及鏈
中圖分類號F062.9文獻標識碼A文章編號1002-2104(2014)12-0082-07doi:10.3969/j.issn.1002-2104.2014.12.011
改革開放以來,中國創造了30多年的經濟高速增長奇跡,也帶來了能耗與排放的大量增長,加劇了節能減排工作和環境治理工作的緊迫性。2013年中共十八大報告強調“形成節約資源和保護環境的空間格局、產業結構、生產方式、生活方式”,2014年中國政府工作報告中也強調“環境污染矛盾突出”,“出重拳強化污染防治”。產業部門作為碳排放的主要源頭,肩負著節能減排的重要責任,如何在追求產業發展的同時控制并減少碳排放,促進經濟發展與資源環境的相互協調已成為一個重要而緊迫的現實任務。這就要求我們在產業發展的過程中,科學測量各部門的碳排放,合理解析碳排放在各部門間的關聯及波及效應。碳排放波及分析的基本依據是,各產業部門在產品或勞務的生產過程中由于能源消耗而產生碳排放,這部分碳排放若是因滿足本部門最終需求產生的,可作為直接碳排放,同時產業部門的產品或服務從上游生產過程到下游生產過程,直至消費者的各個環節不可避免的會產生間接碳排放,當某一部門發生變化時,會引起與其直接相關的產業部門碳排放發生變化,而這些產業部門的變化又會導致其他部門碳排放發生變化,這就產生了碳排放波及效應,這一效應正體現了“從搖籃到墳墓”的全程控制思想。隨著產業的快速發展和產業結構的逐步合理化,產業各部門之間的關系越來越廣泛和復雜,這就要求我們從更深層的部門經濟聯系出發,深入挖掘碳排放在各產業部門之間的關聯和波及效應,研究部門的最終需求變動或投入變動對其他部門碳排放的影響,為落實和貫徹產業碳減排工作提供科學的理論依據和有效的政策支持。
1文獻綜述
碳減排問題一直是國內外學術界關注的熱點問題,產業層面的研究成果主要集中在以下幾個方面:第一,某些特定產業部門或者行業的碳排放測算及節能減排研究。何小剛和張耀輝[1]對中國36個工業行業的實證研究發現,高能耗高排放的重化工業行業表現出典型的粗放增長特征,其節能減排潛力巨大;付雪、王桂新等[2]基于中國能源—碳排放—經濟投入產出表測算了哥本哈根會議目標下各行業的減排潛力和產業結構調整潛力;徐勝等[3]探討了海洋產業低碳化核算問題;楚春禮等[4]測算了2007年中國高新技術產業的碳排放量及碳排放強度,同時發現高新技術產業的碳排放主要來自于醫藥制造業、電子和通訊設備制造業。第二,產業碳排放的影響因素研究。Wang[5]提出應從經濟增長、一次能源需求、交通運輸及電力生產等方面分析中國產業低碳化發展路徑。Agnolucci[6]研究了能源生產部門、商業部門、交通運輸部門以及家庭的碳減排效果,提出應該重點降低商業部門和交通運輸部門的能源強度。第三,隱含碳排放及碳減排差別責任研究。陳紅敏[7]采用擴展的投入產出方法,同時計算各部門由能源消耗導致的隱含碳排放和由某些工業生產過程導致的隱含碳排放,發現建筑業是隱含碳排放最高的產業部門,非金屬礦物制品業的生產過程隱含碳排放占總隱含碳排放的比率最高。錢明霞等[8]基于假設抽取法測算了產業部門的碳排放轉移,發現電力燃氣及水的生產供應業的碳轉移量最大。碳減排差別責任的研究主要圍繞“污染者付費”原則以及由此衍生的“國家領土內的責任”與“生產者污染負擔”原則而展開。Cole[9]、Van Asselt[10]分別立足于發展中國家和發達國家質疑了“生產者污染負擔”原則的公平性。Peters[11]主張“消費者污染負擔”,提出消費者應為與生產過程相關的溫室氣體排放負責。在“生產者污染負擔”和“消費者污染負擔”原則基礎上,不少學者根據不同的研究對象,提出了“進口國和出口國共同分擔”[12]、“生產者與消費者共同分擔”[13]和“產業鏈上下游共同分擔”[14]等原則。徐盈之與鄒芳[15]以“生產者與消費者共同分擔”原則計算了中國各產業部門生產者減排責任與消費者減排責任,劉海嘯等[16]統籌考慮各產業部門對碳排放的依賴度和對整個經濟的影響度來確定產業部門的碳減排責任。
從研究方法來看,投入產出分析被廣泛應用于產業部門能源消費及碳排放的研究中。但現有研究往往局限于一個部門與另一個部門之間的直接或完全聯系,而忽略了多個部門之間順次形成的更深層的部門經濟聯系,基于此,Lahr & Dietzenbacher[17]首次從宏觀視角提出了“生產鏈”,Dietzenbacher[18-19]又提出了平均傳播長度(Average Propagation Lengths,簡稱APL)測算模型描述產業部門經濟距離(Economic Distance Between Sectors),并實證分析了西班牙安達盧西亞地區的生產鏈演化情況。隨后有不少學者又致力于旅游生產鏈[20]、生物能生產鏈[21]等研究。國內學者鄧志國和陳錫康[22-23]利用中國多張序列投入產出表發現國民經濟中存在的重要生產鏈條,并對農業生產鏈的演化情況進行分析,采用脈沖響應函數和方差分解分析產業鏈上下游部門之間的動態影響情況。
現有文獻雖取得了較多極具影響力的研究成果,但是較少地深入產業系統內部,未能將產業部門間的深層經濟聯系和碳排放的順次轉移進行有效對接,導致產業部門碳排放波及效應的研究呈現空白。同時,現有的研究都直接考察一個部門與另一個部門的聯系或某一部門變化對另一部門碳排放的影響,將多個部門同時納入相互關聯的研究尚不成熟。鑒于此,本研究借鑒于“生產鏈”概念的提出,利用投入產出技術構建碳APL測算指標,并以此對產業碳排放波及效應及碳波及鏈進行識別,為產業系統的碳減排研究開辟新的視角。
錢明霞等:產業部門碳排放波及效應分析中國人口·資源與環境2014年第12期2研究方法設計
2.1產業部門能源消費碳排放強度測算方法
國際原子能機構(International Atomic Energy Agency, 簡稱IAEA)的研究報告中曾指出,在整個能源消耗溫室氣體排放中,一次能源(煤、石油、天然氣)產生的碳排放量最多,因此,依據一次能源的消耗量測算碳排放,公式如(1)所示:
其中,R是直接分配系數矩陣,其元素rij表示產業部門j消耗的i種中間產品在總產出中所占的比例;G是產業部門的完全供給系數矩陣,反映的是價格變動導致最初投入增加一個單位對于總產出的影響;Gc是產業部門完全供給碳排放強度矩陣,反映了最初投入增加一單位對于產業部門碳排放的影響。同理,式(4)也能被理解為初始影響及對所有其他部門碳排放的直接影響CR、一步間接影響CR2、……,n-1步間接影響CRn。
2.2.3碳排放APL的測算
著名投入產出學家Erik Dietzenbacher于2005年提出APL模型,將產業部門之間的直接影響和間接影響定量化,借助于產業部門間經濟距離來測算部門間的深層經濟關聯。借鑒Dietzenbacher的研究思路,碳排放的波及效應采用產業部門碳距離來體現,描述衡量產業部門最終需求變動一單位或是最初投入變動一單位對于各部門碳排放的直接影響和間接影響。產業系統各部門的碳排放,不僅表現為本部門能源消耗引發的碳排放,更需要區分碳排放在部門之間的轉移,以及區分碳排放在本部門的初始影響、對于其他部門的直接影響、一步間接影響等。
假設某一產業部門對其他產業部門碳排放的直接影響就是一步碳距離造成的,將其量化為1×ci×aij,即為CA;某一產業部門對其他產業部門碳排放的一步間接影響就是二步碳距離造成的,將其量化為2×ci∑kaikakj=2CA2;……;以此類推,可以得到一部門最終需求變化對各部門碳排放的影響及波及,即為碳APL。在利用投入產出技術測度后向關聯和前向關聯的方法中,最被學術界認同的是基于Leontief模型測算后向關聯,基于Ghosh模型測算前向關聯,因此根據影響因素的不同,可分為后向碳APLb和前向碳APLf?;贚eontief模型的后向碳APLb值Mij和基于Ghosh模型的前向碳APLf值Nij定義為:
其他服務業共4個。進一步識別對上述4個產業存在碳供給的部門,發現建筑業同時對交通運輸倉儲和郵政業、其他服務業存在碳供給,農林牧漁業對食品制造及煙草加工業存在碳供給。至此,識別出了最終的二級碳供給產業。若將閥值調整為2.5,又可識別出農林牧漁業對批發零售住宿餐飲業有直接的碳供給,其他服務業依次對交通運輸倉儲和郵政業、采掘業存在碳供給。
同理,選取閥值為2,利用前向碳APLf值識別碳需求產業,結果發現主要識別出了煉焦化工金屬產品制造業和機械設備制造業的碳需求產業,它們是:農林牧漁業、采掘業、食品制造及煙草加工業、紡織皮革木材造紙制造業、電力燃氣及水的生產供應業、建筑業、交通運輸、倉儲和郵政業、批發零售住宿餐飲業。其他服務業的碳需求產業是農林牧漁業、采掘業、食品制造及煙草加工業、電力燃氣及水的生產供應業、建筑業、交通運輸、倉儲和郵政業、批發零售住宿餐飲業。進一步識別碳需求的二級產業,發現農林牧漁業的碳需求產業是食品制造及煙草加工業;紡織皮革木材造紙制造業的碳需求產業是采掘業、食品制造及煙草加工業、交通運輸、倉儲和郵政業及批發零售住宿餐飲業;建筑業的碳需求產業是采掘業、電力燃氣及水的生產供應業、交通運輸、倉儲和郵政業及批發零售住宿餐飲業;批發零售住宿餐飲業的碳需求產業是采掘業。
通過對各產業部門碳供給產業和碳需求產業的識別,形成了產業系統碳波及鏈,如圖1所示(閥值均為2),特點如下:其一,從產業上下游之間的關聯角度來看,產業部門之間的碳波及鏈實際上已經呈現出錯綜復雜的“網狀”結構,而非單一的“鏈狀”結構。其二,產業系統碳波及鏈以機械設備制造業和煉焦化工金屬產品制造業為上游部門,在部門自身發展的過程中產生了碳排放并直接和間接的影響了其他部門的碳排放;其三,農林牧漁業、紡織皮革木材造紙制造業、食品制造及煙草加工業、交通運輸倉儲和郵政業等部門之間相互關聯和波及,互相轉移和吸收碳排放,這也同現階段產業融合發展的特征相呼應。讓人頗感意外的是采掘業和電力燃氣及水的生產供應業兩大部門均位于產業碳波及鏈的末端,在其產業部門自身發展的過程中受到機械設備制造業、煉焦化工金屬產品制造業等部門的碳波及但未對其他部門產生影響,究其原因,與采掘業在尋找及開發礦產及油氣資源中需要先進的機械設備、電力燃氣及水的生產供應業在自身發展中需要大量的煉焦產品作支撐是密不可分的。
圖1產業部門碳波及鏈結構圖
Fig.1Structure of carbon spread chains
of industrial sectors4結論和啟示
本文基于投入產出技術,構建了需求推動和供給驅動下的碳排放模型,并結合2007年中國投入產出表衡量了產業部門碳排放的波及效應,進一步識別了產業系統碳波及鏈,主要的結論與啟示如下:①第二產業是能源消費碳排放的大戶,尤其是煉焦化工金屬產品制造業和電力燃氣及水的生產供應業,其中,電力燃氣及水的生產供應業的碳排放強度最大,為2.123t/萬元。②在“需求拉動經濟”的政策背景下,需求拉動作用下的產業部門碳波及效應較供給驅動作用下的碳波及效應更為顯著。③產業系統的碳波及已經呈現出錯綜復雜的網狀結構而非單一的線性鏈條,因此,節能減排工作的順利實施,必須從產業系統總體的角度進行規劃,清楚地認識到各個產業部門在產業碳波及鏈中的功能和作用,通過縱向和橫向的溝通與競合,推動部門自身和其他部門之間的協同減排。
另外,本文所運用的基于投入產出分析的碳APL識別技術是一種較為簡單的方法,忽略了隱含碳排放在各部門間的流動和分配,一定程度上影響到碳排放的波及效應。閥值的選取也限制了碳波及鏈的識別結果。其次,本文的實證結果是依據2007年的投入產出表獲得的,數據的滯后性以及單一年份的計算結果也影響了結論的時效性和可靠性。如何獲得最新的數據解析中國產業系統碳排放的演變規律及隱含碳排放的動態關聯及波及效應,促進產業的低碳化發展是未來研究的重要課題。
(編輯:李琪)
參考文獻(References)
[1]何小剛,張耀輝. 技術進步、節能減排與發展方式轉型[J]. 數量經濟技術經濟研究,2012,(3):76-90. [He Xiaogang, Zhang Yaohui. Technology Progress, Energy Save and Emission Reduce and Development Pattern Transformation [J]. The Journal of Quantitative & Technical Economics, 2012, (3):76-90.]
[2]付雪,王桂新,彭希哲. 哥本哈根會議目標下中國行業實際減排潛力研究:基于2007年中國能源-碳排放-經濟投入產出表的最優化模型[J]. 復旦學報:社會科學版,2012,(4):114-124. [Fu Xue, Wang Guixin, Peng Xizhe. A Study on the Actual Potentialities of Reducing Emissions for Chinas Industries by the Goals Set at the Copenhagen Conference:An Optimization Model Based on Chinas 2007 EnergiesCarbon EmissionEconomic Input and Output Table[J]. Journal of Fudan University: Social Science, 2012, (4): 114-124.]
[3]徐勝,趙艷香. 我國海洋產業碳排放核算研究[J]. 生態經濟,2012,(8):102-106. [Xu Sheng, Zhao Yanxiang. Research on Marine Industries Carbon Emission Calculation [J]. Ecological Economy, 2012, (8):102-106.]
[4]楚春禮,郭彩霞,鞠美庭,等.中國高新技術產業能源消耗與碳排放分析[J]. 環境污染與防治,2011,33(8):23-28. [Chu Chunli, Guo Caixia, Ju Meiting, et al. Analysis of Energy Consumption and Low Carbon Strategies on the HighTech Industry of China [J]. Environmental Pollution & Control, 2011, 33(8):23-28.]
[5]Wang T, Watson J. Scenario Analysis of Chinas Emissions Pathways in the 21st Century for Low Carbon Transition [J]. Energy Policy, 2010, 38(7): 3537-3546.
[6]Agnolucci P, Ekins P, Iacopini G, et al. Different Scenarios for Achieving Radical Reduction in Carbon Emissions: a Decomposition Analysis [J]. Ecological Economics, 2009, 68(6): 1652-1666.
[7]陳紅敏. 包含工業生產過程碳排放的產業部門隱含碳研究[J]. 中國人口·資源與環境,2009,19(3): 25-30. [Chen Hongmin. Analysis on Embodied CO2 Emissions Including Industrial Process Emissions [J]. China Population, Resources and Environment, 2009, 19(3):25-30.]
[8]錢明霞,路正南,王健. 基于假設抽取法的產業部門碳排放關聯分析[J]. 中國人口·資源與環境,2013, 23(9):34-41. [Qian Mingxia, Lu Zhengnan, Wang Jian. Analysis of Linkage of Carbon Emissions in Industrial Sectors based on Hypothetical Extraction Method [J]. China Population, Resources and Environment, 2013, 23(9):34-41.]
[9]Cole M A, Elliott R J R. FDI and the Capital Intensity of “Dirty” Sectors: A Missing Piece of the Pollution Haven Puzzle [J]. Review of Development Economics, 2005, 9(4): 530-548.
[10]Van Asselt H, Biermann F. European Emissions Trading and the International Competitiveness of Energyintensive Industries: A Legal and Political Evaluation of Possible Supporting Measures [J]. Energy Policy, 2007, 35(1): 497-506.
[11]Peters G P, Hertwich E G. CO2 Embodied in International Trade with Implications for Global Climate Policy [J]. Environmental Science & Technology, 2008, 42(5): 1401-1407.
[12]Ferng J J. Allocating the Responsibility of CO2 OverEmissions from the Perspectives of Benefit Principle and Ecological Deficit [J]. Ecological Economics, 2003, 46(1): 121-141.
[13]Lenzen M, Murray J, Sack F, et al. Shared Producer and Consumer Responsibility:Theory and Practice [J]. Ecological Economics, 2007, 61(1): 27-42.
[14]Bastianoni S, Pulselli FM, Tiezzi E. The Problem of Assigning Responsibility for Greenhouse Gas Emissions [J]. Ecological Economics, 2004, 49(3): 253-257.
[15]徐盈之,鄒芳. 基于投入產出分析法的我國各產業部門碳減排責任研究[J]. 產業經濟研究,2010,(5): 27-35. [Xu Yingzhi, Zou Fang. Carbon Reduction Responsibility of Chinas Industries Based on the InputOutput Analysis [J]. Industrial Economics Research, 2010, (5): 27-35.]
[16]劉海嘯,張曉津,曲文靜. 基于發展視角的各產業部門碳減排責任研究:以河北省為例[J]. 燕山大學學報:哲學社會科學版,2011,12(3):123-127. [Liu Haixiao, Zhang Xiaojin, Qu Wenjing. Carbon Reduction Responsibility of Industries on Development Perspective:A Case Study of Hebei Province [J]. Journal of Yanshan University: Philosophy and Social Science Edition, 2011, 12(3):123-127.]
[17]Lahr M L, Dietzenbacher E. InputOutput Analysis: Frontiers and Extensions[M]. Basingstoke: Palgrave Macmillan, 2001.
[18]Dietzenbacher E, Romero I, Bosma N S. Using Average Propagation Lengths to Identify Production Chains in the Andalusian Economy [J]. Estudios de Economia Aplicada, 2005, 23(8): 405-422.
[19]Dietzenbacher E, Romero I. Production Chains in an Interregional Framework:Identification by Means of Average Propagation Lengths [J]. International Regional Science Review, 2007, 30(4):362-383.
[20]Sun Y Y. Adjusting InputOutput Models for Capacity Utilization in Service Industries [J]. Tourism Management, 2007, 28(6): 1507-1517.
[21]Yazan D M, Garavelli A C, Petruzzeli A M, et al. The Effect of Spatial Variables on the Economic and Environmental Performance of Bioenergy Production Chains[J]. International Journal of Production Economics, 2011, 131 (1): 224-233.
[22]鄧志國,陳錫康. 基于APL模型的中國部門生產鏈演化分析[J]. 數學的實踐與認識,2008,38(1):53-59. [Deng Zhiguo, Chen Xikang. Analysis on Chinese Product Sectors Production Chains and Their Evolution Based on APL Model [J]. Mathematics in Practice and Theory, 2008, 38(1):53-59.]
[23]鄧志國,陳錫康. 中國部門生產鏈演化趨勢及動態影響分析[J]. 運籌與管理,2009,18(5):19-23. [Deng Zhiguo, Chen Xikang. Analysis of the Evolvement Trend and Dynamic Impact of Sectors Production Chains in China[J]. Operations Research and Management Science, 2009, 18(5):19-23.]
[24]國家統計局. 中國統計年鑒:2008[M]. 北京: 中國統計出版社,2008. [National Bureau of Statistics of China. China Statistical Yearbook:2008[M]. Beijing: China Statistics Press,2008. ]
Analysis of Carbon Propogation Effects of Industrial Sectors
QIAN Mingxia1, 2LU Zhengnan2WANG Jian1
(1. School of Finance & Economics, Jiangsu University, Zhenjiang Jiangsu 212013,China;
2. School of Management, Jiangsu University, Zhenjiang Jiangsu 212013,China)
AbstractWith the Chinese industrial sectors as the object, the demanddriven and supplydriven carbon emission models are first built based on the inputoutput technique, and then the carbon propagation effects are measured by computing the distance between different industrial sectors with the average propagation length (APL) index for carbon emission. Based on this measurement, the carbon propagation chain of industrial sectors is finally identified using the backward carbon APL and forward carbon APL. The empirical analysis shows that the carbon emission of the second industry is 1 651 368 840 ton accounting for 98.23% of the whole carbon emissions of all industrial sectors. For this reason, the second industry is responsible for the major carbon emission. Especially, the carbon emission of coking coal, chemical and metal manufacture sector and the electricity, gas and water production/supply sector make up 87.52% of the whole carbon emission of all industrial sectors, where the electricity, gas and water production/supply sector is the most remarkable one in carbon emission intensity with 2.123 ton per 10 000 Yuan. The computation and comparison results of the mean value and standard deviation of the backward carbon APL and forward carbon APL indexes show that the forward carbon APL is big and decentralized, and that the demanddriven carbon propogation effect is more remarkable than the supplydriven one under the demanddriveeconomy background. The further identifications of carbon supply industry and carbon demand industry show that the carbon propagation chain presents an intricate network structure rather than simple linear structure. In this network structure, the machinery equipment manufacturing sector and coking coal, chemical and metal manufacture sector are in the upstream of the carbon propagation chain, while the mining sector and electricity, gas and water production/supply sector are in the downstream. For the agriculture, forestry, animal husbandry and fishery sector, textile, leather, wood and paper manufacturing sector, foods and tobacco manufacturing sector, transport, storage and post sector, their carbon emissions associate and propagate each other, and hence their carbon emissions can transfer and absorb each other. Therefore, in order to effectively reduce the carbon emissions, it is essential to realize the function and effect of sectors in carbon propagation chain and to promote the cooperation between each other by vertical and horizontal communication and competition.
Key wordsinputoutput; carbon emissions; carbon propagation chains
[23]鄧志國,陳錫康. 中國部門生產鏈演化趨勢及動態影響分析[J]. 運籌與管理,2009,18(5):19-23. [Deng Zhiguo, Chen Xikang. Analysis of the Evolvement Trend and Dynamic Impact of Sectors Production Chains in China[J]. Operations Research and Management Science, 2009, 18(5):19-23.]
[24]國家統計局. 中國統計年鑒:2008[M]. 北京: 中國統計出版社,2008. [National Bureau of Statistics of China. China Statistical Yearbook:2008[M]. Beijing: China Statistics Press,2008. ]
Analysis of Carbon Propogation Effects of Industrial Sectors
QIAN Mingxia1, 2LU Zhengnan2WANG Jian1
(1. School of Finance & Economics, Jiangsu University, Zhenjiang Jiangsu 212013,China;
2. School of Management, Jiangsu University, Zhenjiang Jiangsu 212013,China)
AbstractWith the Chinese industrial sectors as the object, the demanddriven and supplydriven carbon emission models are first built based on the inputoutput technique, and then the carbon propagation effects are measured by computing the distance between different industrial sectors with the average propagation length (APL) index for carbon emission. Based on this measurement, the carbon propagation chain of industrial sectors is finally identified using the backward carbon APL and forward carbon APL. The empirical analysis shows that the carbon emission of the second industry is 1 651 368 840 ton accounting for 98.23% of the whole carbon emissions of all industrial sectors. For this reason, the second industry is responsible for the major carbon emission. Especially, the carbon emission of coking coal, chemical and metal manufacture sector and the electricity, gas and water production/supply sector make up 87.52% of the whole carbon emission of all industrial sectors, where the electricity, gas and water production/supply sector is the most remarkable one in carbon emission intensity with 2.123 ton per 10 000 Yuan. The computation and comparison results of the mean value and standard deviation of the backward carbon APL and forward carbon APL indexes show that the forward carbon APL is big and decentralized, and that the demanddriven carbon propogation effect is more remarkable than the supplydriven one under the demanddriveeconomy background. The further identifications of carbon supply industry and carbon demand industry show that the carbon propagation chain presents an intricate network structure rather than simple linear structure. In this network structure, the machinery equipment manufacturing sector and coking coal, chemical and metal manufacture sector are in the upstream of the carbon propagation chain, while the mining sector and electricity, gas and water production/supply sector are in the downstream. For the agriculture, forestry, animal husbandry and fishery sector, textile, leather, wood and paper manufacturing sector, foods and tobacco manufacturing sector, transport, storage and post sector, their carbon emissions associate and propagate each other, and hence their carbon emissions can transfer and absorb each other. Therefore, in order to effectively reduce the carbon emissions, it is essential to realize the function and effect of sectors in carbon propagation chain and to promote the cooperation between each other by vertical and horizontal communication and competition.
Key wordsinputoutput; carbon emissions; carbon propagation chains
[23]鄧志國,陳錫康. 中國部門生產鏈演化趨勢及動態影響分析[J]. 運籌與管理,2009,18(5):19-23. [Deng Zhiguo, Chen Xikang. Analysis of the Evolvement Trend and Dynamic Impact of Sectors Production Chains in China[J]. Operations Research and Management Science, 2009, 18(5):19-23.]
[24]國家統計局. 中國統計年鑒:2008[M]. 北京: 中國統計出版社,2008. [National Bureau of Statistics of China. China Statistical Yearbook:2008[M]. Beijing: China Statistics Press,2008. ]
Analysis of Carbon Propogation Effects of Industrial Sectors
QIAN Mingxia1, 2LU Zhengnan2WANG Jian1
(1. School of Finance & Economics, Jiangsu University, Zhenjiang Jiangsu 212013,China;
2. School of Management, Jiangsu University, Zhenjiang Jiangsu 212013,China)
AbstractWith the Chinese industrial sectors as the object, the demanddriven and supplydriven carbon emission models are first built based on the inputoutput technique, and then the carbon propagation effects are measured by computing the distance between different industrial sectors with the average propagation length (APL) index for carbon emission. Based on this measurement, the carbon propagation chain of industrial sectors is finally identified using the backward carbon APL and forward carbon APL. The empirical analysis shows that the carbon emission of the second industry is 1 651 368 840 ton accounting for 98.23% of the whole carbon emissions of all industrial sectors. For this reason, the second industry is responsible for the major carbon emission. Especially, the carbon emission of coking coal, chemical and metal manufacture sector and the electricity, gas and water production/supply sector make up 87.52% of the whole carbon emission of all industrial sectors, where the electricity, gas and water production/supply sector is the most remarkable one in carbon emission intensity with 2.123 ton per 10 000 Yuan. The computation and comparison results of the mean value and standard deviation of the backward carbon APL and forward carbon APL indexes show that the forward carbon APL is big and decentralized, and that the demanddriven carbon propogation effect is more remarkable than the supplydriven one under the demanddriveeconomy background. The further identifications of carbon supply industry and carbon demand industry show that the carbon propagation chain presents an intricate network structure rather than simple linear structure. In this network structure, the machinery equipment manufacturing sector and coking coal, chemical and metal manufacture sector are in the upstream of the carbon propagation chain, while the mining sector and electricity, gas and water production/supply sector are in the downstream. For the agriculture, forestry, animal husbandry and fishery sector, textile, leather, wood and paper manufacturing sector, foods and tobacco manufacturing sector, transport, storage and post sector, their carbon emissions associate and propagate each other, and hence their carbon emissions can transfer and absorb each other. Therefore, in order to effectively reduce the carbon emissions, it is essential to realize the function and effect of sectors in carbon propagation chain and to promote the cooperation between each other by vertical and horizontal communication and competition.
Key wordsinputoutput; carbon emissions; carbon propagation chains