

【摘 要】通過(guò)作者“直線與平面平行的性質(zhì)”說(shuō)課教學(xué)設(shè)計(jì)片斷,闡述“問(wèn)題導(dǎo)學(xué)”教學(xué)法在高中數(shù)學(xué)說(shuō)課中的應(yīng)用方法。
【關(guān)鍵詞】直線與平面平行的性質(zhì) "問(wèn)題導(dǎo)學(xué) "說(shuō)課設(shè)計(jì)
【中圖分類號(hào)】 G 【文獻(xiàn)標(biāo)識(shí)碼】 A
【文章編號(hào)】0450-9889(2015)02B-0080-02
說(shuō)課是教師針對(duì)某一觀點(diǎn)、問(wèn)題或具體課題,口頭表述其教學(xué)設(shè)想及其理論依據(jù)。說(shuō)課活動(dòng)作為教研形式其優(yōu)點(diǎn)在于簡(jiǎn)便易行、節(jié)省時(shí)間、無(wú)須學(xué)生參與,面對(duì)的對(duì)象是一些專家、學(xué)者、教研員、同一學(xué)科的教師。這種活動(dòng)常運(yùn)用于教研部門舉行的教師業(yè)務(wù)競(jìng)賽,學(xué)校組織的教學(xué)大練兵,教師招考等活動(dòng)中。要想在這些比賽中取勝,一個(gè)關(guān)鍵點(diǎn)就是設(shè)計(jì)好說(shuō)課的內(nèi)容。
問(wèn)題是數(shù)學(xué)研究最重要的內(nèi)容。美國(guó)數(shù)學(xué)家哈爾莫斯指出:“定理、證明、概念、定義、理論、公式、方法中的任何一個(gè)都不是數(shù)學(xué)的心臟,只有問(wèn)題是數(shù)學(xué)的心臟。”如何設(shè)計(jì)一節(jié)優(yōu)秀的說(shuō)課教學(xué)設(shè)計(jì),我們可以從“設(shè)置問(wèn)題”“解決問(wèn)題”去展開,去思考。黃河清“問(wèn)題導(dǎo)學(xué)”教學(xué)法將問(wèn)題的提出和解決作為教學(xué)基本環(huán)節(jié),追求滿足教學(xué)目標(biāo)和學(xué)生基礎(chǔ)的雙重要求,致力于激發(fā)學(xué)生學(xué)習(xí)的主動(dòng)性和積極性。筆者初次接觸“問(wèn)題導(dǎo)學(xué)”是在三年前,第一次抱著嘗試的心態(tài)按照“問(wèn)題導(dǎo)學(xué)”教學(xué)法進(jìn)行說(shuō)課比賽的教學(xué)設(shè)計(jì),結(jié)果一舉奪冠,原來(lái)說(shuō)課也可以通過(guò)“問(wèn)題”來(lái)上!
一、緣起
2012年秋,筆者參加百色市舉行的青年教師教學(xué)基本功大賽,本次大賽由兩部分組成,一是看現(xiàn)場(chǎng)示范課,寫評(píng)課報(bào)告,二是說(shuō)課。當(dāng)時(shí),在寫評(píng)課報(bào)告這個(gè)環(huán)節(jié)上筆者得的分?jǐn)?shù)并不高,要想奪冠,就必須在說(shuō)課比賽上拿高分。參加這次比賽的教師個(gè)個(gè)都是精英,想要從中脫穎而出,必須要有亮點(diǎn)。通過(guò)簡(jiǎn)短的幾分鐘時(shí)間,把自己的教學(xué)“絕活”呈現(xiàn)出來(lái)。筆者現(xiàn)場(chǎng)抽簽選到的課題是“直線與平面平行的性質(zhì)”。通過(guò)查閱相關(guān)的資料,筆者發(fā)現(xiàn)說(shuō)課的內(nèi)容設(shè)計(jì)一般是圍繞說(shuō)教材、說(shuō)教法、說(shuō)學(xué)法、說(shuō)教學(xué)程序來(lái)展開。說(shuō)教材,即闡述教者對(duì)數(shù)學(xué)教材的理解。說(shuō)教法、學(xué)法,即敘述課堂教學(xué)中教師進(jìn)行教學(xué)時(shí)主要采取的教學(xué)方式和引導(dǎo)學(xué)生學(xué)習(xí)數(shù)學(xué)所采用的主要方式。說(shuō)教學(xué)程序,即說(shuō)說(shuō)在課堂教學(xué)中先干什么,后干什么的安排。關(guān)于教材、教法、學(xué)法的介紹,大家的觀點(diǎn)大同小異,難以拉開差距。倘若想在說(shuō)課賽課上取得高分,可以在“說(shuō)教學(xué)程序”上做出與眾不同的解讀,展示自身的知識(shí)深度。
如何在短短的幾分鐘之內(nèi)向評(píng)委、專家說(shuō)清“教學(xué)程序”?按照平常上課的教案去說(shuō),顯然不合適,因?yàn)槊鎸?duì)的對(duì)象不一樣,要求不一樣。那該如何是好?筆者想到了“問(wèn)題導(dǎo)學(xué)”。何不根據(jù)教學(xué)目標(biāo)和學(xué)生特點(diǎn),設(shè)計(jì)問(wèn)題,闡明設(shè)計(jì)意圖,最后圍繞“問(wèn)題”的解決過(guò)程,將設(shè)計(jì)意圖轉(zhuǎn)化為可操作的、有效的教學(xué)手段。如此,不但說(shuō)出怎樣教,更說(shuō)出這樣教的理由,一舉兩得。
二、說(shuō)課設(shè)計(jì)
學(xué)貴有疑。筆者鉆研教材,在設(shè)計(jì)過(guò)程中把教學(xué)目標(biāo)以一個(gè)個(gè)“問(wèn)題”的形式呈現(xiàn)出來(lái),把前人和自己對(duì)知識(shí)結(jié)論的認(rèn)知過(guò)程分解為若干步,并一一鋪設(shè)階梯,層層設(shè)“問(wèn)”,啟發(fā)學(xué)生通過(guò)思考一步一步地沿著教學(xué)目標(biāo)前進(jìn)。以下是“直線與平面平行的性質(zhì)”說(shuō)課教學(xué)設(shè)計(jì)片斷。
整個(gè)教學(xué)過(guò)程由五個(gè)環(huán)節(jié)組成:創(chuàng)設(shè)情境,引出課題——分組合作,探究新知——成果展示,歸納新知——運(yùn)用新知,鞏固提高——課堂小結(jié),布置作業(yè)。
(一)創(chuàng)設(shè)情境,引出課題
1.直線與平面平行的判定定理是什么?
定理:若平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。
2.直線與平面平行的判定定理解決了直線與平面平行的條件問(wèn)題,反之,在直線與平面平行的條件下,可以得到什么結(jié)論呢?
設(shè)計(jì)意圖:在此環(huán)節(jié)中,筆者設(shè)置了兩個(gè)問(wèn)題,讓學(xué)生對(duì)線面平行的判定定理進(jìn)行回顧,既復(fù)習(xí)了舊知,同時(shí)為本節(jié)課作好了鋪墊。
(二)分組合作,探究新知
如果直線a與平面α 平行,那么直線a與平面α 內(nèi)的直線有哪些位置關(guān)系?
如果直線a 與平面α平行,那么經(jīng)過(guò)直線a的平面與平面α有幾種位置關(guān)系?
如果直線a與平面α 平行,經(jīng)過(guò)直線a的平面與平面α相交于直線b,那么直線a,b的位置關(guān)系如何?為什么?
設(shè)計(jì)意圖:在處理第一個(gè)問(wèn)題時(shí),就強(qiáng)調(diào)直線a與平面內(nèi)的直線的位置關(guān)系是平行和異面兩種,所以若兩直線共面,則這兩條直線就平行。根據(jù)學(xué)生認(rèn)知規(guī)律,結(jié)合新課教學(xué)的特點(diǎn),以問(wèn)題探究的形式引導(dǎo)學(xué)生的思維活動(dòng)。通過(guò)探究、猜想,得出性質(zhì)定理,從而突破重點(diǎn)。
(三)成果展示,歸納新知
直線與平面平行的性質(zhì)定理:如果一條直線與一個(gè)平面平行,則過(guò)這條直線的任一平面與此平面的交線與該直線平行。
設(shè)計(jì)意圖:學(xué)生討論結(jié)束之后,請(qǐng)各小組上臺(tái)展示成果,引導(dǎo)學(xué)生從中歸納得出線面平行的性質(zhì)定理。緊接著,讓學(xué)生用文字、圖形和符號(hào)三種語(yǔ)言描述該定理,并指出定理的內(nèi)涵。讓學(xué)生親身經(jīng)歷知識(shí)的產(chǎn)生過(guò)程,體驗(yàn)收獲的快樂(lè)。
問(wèn)題:教室內(nèi)日光燈管所在的直線與地面平行,如何在地面上作一條直線與燈管所在的直線平行?
設(shè)計(jì)意圖:學(xué)習(xí)了性質(zhì)定理之后,引導(dǎo)學(xué)生把新知運(yùn)用到實(shí)際問(wèn)題中,實(shí)現(xiàn)學(xué)生自主探究。首先通過(guò)燈管問(wèn)題讓學(xué)生思考,歸納得出作平行線的一種方法,向?qū)W生展示定理的外延。通過(guò)創(chuàng)設(shè)學(xué)生熟悉的問(wèn)題情境,激發(fā)學(xué)生學(xué)數(shù)學(xué),用數(shù)學(xué)的興趣。
(四)運(yùn)用新知,鞏固提高
例1 "如圖所示的一塊木料中,棱BC平行于面A′C′,點(diǎn)P在平面A′C′上,要經(jīng)過(guò)面A′C′內(nèi)一點(diǎn)P和棱BC將木料鋸開,應(yīng)怎樣畫線?
思考:
(1)點(diǎn)P和棱BC都在鋸開的截面上嗎?
(2)該截面和面A′C′的位置關(guān)系如何?
(3)BC和該截面與平面 A′C′的交線EF又是什么位置關(guān)系呢?
(4)棱BC和棱B′C′又有怎樣的位置關(guān)系?
(5)棱B′C′與交線 EF互相平行嗎?
設(shè)計(jì)意圖:為了讓學(xué)生能夠更靈活地運(yùn)用新知,并體會(huì)判定定理和性質(zhì)定理的相互轉(zhuǎn)化的重要思想方法。筆者設(shè)置了一個(gè)課本上的例題,由于本題難度較大,為了降低難度,故設(shè)計(jì)了一系列的問(wèn)題串,在處理問(wèn)題(1)(2)時(shí),讓學(xué)生找出截面與面A′C′的交線;而在處理問(wèn)題(3)(4)(5)時(shí),進(jìn)一步引導(dǎo)學(xué)生得出交線與棱B′C′的平行關(guān)系,從而正確畫出所要求的線段,使得復(fù)雜問(wèn)題簡(jiǎn)單化了,很好地突破了難點(diǎn),這也是本節(jié)課的亮點(diǎn)之一。
小試牛刀:
已知:直線a,b和平面α ,a∥b, a∥α,a,b都在平面α 外。求證:b∥α 。
設(shè)計(jì)意圖:為了檢驗(yàn)學(xué)生的學(xué)習(xí)掌握情況,筆者設(shè)置了這樣一道練習(xí)題,先讓學(xué)生獨(dú)立完成,并讓成績(jī)中等學(xué)生板書證明過(guò)程。由于接觸證明題不久,教師強(qiáng)調(diào)書寫規(guī)范,讓學(xué)生從一開始就養(yǎng)成良好的書寫習(xí)慣。
(五)課堂小結(jié),布置作業(yè)
1.通過(guò)本節(jié)課的學(xué)習(xí),你有什么收獲?
設(shè)計(jì)意圖:課堂小結(jié)環(huán)節(jié),筆者設(shè)置了這樣的問(wèn)題,讓學(xué)生舉手回答,這有助于學(xué)生養(yǎng)成整理知識(shí)的習(xí)慣;及時(shí)把知識(shí)系統(tǒng)化、條理化,同時(shí)加深學(xué)生對(duì)線線平行與線面平行的相互轉(zhuǎn)換的理解,完善學(xué)生的知識(shí)體系。
2.課后作業(yè)
必做:P61練習(xí),習(xí)題2.2A組的1,2。(做在書上)
選做:P63習(xí)題2.2B組的1,2。
設(shè)計(jì)意圖:作業(yè)中既有必做題,又有選做題,針對(duì)學(xué)生個(gè)體差異進(jìn)行分層訓(xùn)練,讓每位學(xué)生都能做數(shù)學(xué)題,學(xué)到數(shù)學(xué)。
三、說(shuō)課的效果
筆者按照以上的教學(xué)設(shè)計(jì)進(jìn)行說(shuō)課,贏得了專家、評(píng)委們的一致好評(píng),取得了高分,最后獲得了青年教師基本功大賽的第一名。賽課后,評(píng)委們對(duì)賽課進(jìn)行點(diǎn)評(píng),提到每一位參賽老師在說(shuō)課時(shí)都說(shuō)到數(shù)學(xué)《必修2》第59頁(yè)的一道例題“如圖所示的一塊木料中,棱BC平行于面A′C′,點(diǎn)P在平面A′C′上,要經(jīng)過(guò)面A′C′內(nèi)一點(diǎn)P和棱BC將木料鋸開,應(yīng)怎樣畫線?”其他老師都是把題目解答過(guò)程直接展示出來(lái),平鋪直敘。事實(shí)上,這個(gè)題目對(duì)學(xué)生而言是有難度的。在立體空間里,如何把點(diǎn)P確定一下來(lái)?怎么會(huì)想到過(guò)點(diǎn)P做B′C′的平行線?這些都需要慢慢引導(dǎo)學(xué)生去做。怎樣引導(dǎo)?筆者通過(guò)設(shè)置一系列的問(wèn)題竄,諸如“點(diǎn)P和棱BC都在鋸開的截面上嗎?”“該截面和面A′C′的位置關(guān)系如何?”等等,學(xué)生在解決這幾個(gè)問(wèn)題的過(guò)程中,不知不覺(jué)就摘得勝利的果實(shí)。專家們對(duì)這種說(shuō)課方式非常認(rèn)可,覺(jué)得通過(guò)設(shè)置這種“有梯度”的問(wèn)題來(lái)處理課本例題相當(dāng)漂亮,即考慮到學(xué)生的認(rèn)知特點(diǎn),又能把數(shù)學(xué)內(nèi)涵講透。有一位同行在聽完說(shuō)課后,直呼過(guò)癮,這樣處理例題太精彩了,一氣呵成!
四、幾點(diǎn)感悟
通過(guò)本次說(shuō)課賽課,筆者也是感悟頗多。首先,說(shuō)課賽課具有短、平、快的特點(diǎn)。在短短的幾分鐘之內(nèi),要贏得說(shuō)課比賽,不單單要把課題想清楚,還需要有所創(chuàng)新。目前,在說(shuō)課活動(dòng)中采用黃河清“問(wèn)題導(dǎo)學(xué)”來(lái)設(shè)計(jì)教學(xué)過(guò)程還是比較少的。倘若教師能設(shè)置“好”問(wèn)題,將教學(xué)各環(huán)節(jié)、知識(shí)各部分有機(jī)地聯(lián)結(jié)起來(lái),那么必會(huì)為說(shuō)課增添光彩。其次,學(xué)生對(duì)知識(shí)的學(xué)習(xí),是一個(gè)“波浪式前進(jìn)、螺旋式上升”的過(guò)程,對(duì)新知識(shí)的認(rèn)知常常建立在原有認(rèn)知的基礎(chǔ)上。因此,問(wèn)題的設(shè)置首先要聯(lián)系實(shí)際,能激活學(xué)生原有的知識(shí),使設(shè)置的“問(wèn)題”讓學(xué)生“能想”“愿想”。比如,教師可以針對(duì)某個(gè)典型的例題,有計(jì)劃、有步驟、有層次、有目的地設(shè)計(jì)問(wèn)題,并把自己的設(shè)計(jì)意圖闡述出來(lái)。這樣說(shuō)課,既有教學(xué)程序的展示,又有理論根據(jù),使得說(shuō)課有理、有據(jù),這就為上好課,提高課堂教學(xué)效率,提供了可靠的保障。最后,提高說(shuō)課水平是我們每一位教師追求的目標(biāo)。在不斷的教學(xué)實(shí)踐和反思中,定會(huì)使得我們的課堂走向成熟,更加接近理想的課堂。
(責(zé)編 盧建龍)