梁世偉,黃海波,黃桂雄,管俊,楊建鈞,劉旭陽
?
移植腎急性排斥擴散加權成像早期診斷價值
梁世偉1,黃海波2*,黃桂雄2,管俊2,楊建鈞3,劉旭陽4
[摘要]目的 探討移植腎急性排斥擴散加權成像早期診斷價值。材料與方法 應用3.0 T MR擴散加權成像序列(b=0、100、800 s/mm2),分別掃描原位正常腎51例(A組)、移植正常腎22例(B組)、急性排斥反應移植腎15例(C組)志愿者,數據導入自帶工作站處理獲得3組腎皮質、髓質、肌肉的表觀擴散系數(apparent diffusion coefficient, ADC0-800)。比較原位腎組皮髓質ADC0-800值雙側差異,兩組正常腎皮質與髓質差異,3組年齡、性別間以及肌肉、腎皮質、髓質ADC0-800值差異,以活檢病理為“金標準”,評價腎皮質ADC0-800值診斷移植腎急性排斥效能。結果 3組間年齡、性別、肌肉ADC0-800值無統計學差異(P>0.05);原位腎皮髓質ADC0-800值雙側差異無統計學意義(P>0.05);正常腎皮質ADC0-800值高于髓質,差異有統計學意義(P<0.05);3組間腎皮質ADC0-800值差異有統計學意義(P<0.05),兩兩比較C組與A、B組間均有統計學差異(P<0.05),A組與B組間差異無統計學意義(P>0.05);髓質ADC值3組間無統計學差異(P>0.05)。以病理為標準,取1.76×10–3mm2/s為閾值,皮質ADC0-800值診斷急性排斥移植腎受試者工作特征曲線下面積為0.942,敏感度與特異性分別為86.7%和90.4%。結論 磁共振擴散加權成像對移植腎急性排斥早期診斷具有較高價值。
[關鍵詞]腎移植;移植物排斥;彌散磁共振成像;擴散加權成像
作者單位:1. 武警廣西總隊醫院放射科,南寧530003 2. 解放軍第303醫院醫學影像科,南寧 530021 3. 解放軍第303醫院病理科,南寧530021 4. 解放軍第303醫院移植科,南寧530021
接受日期:2015-12-23
梁世偉, 黃海波, 黃桂雄, 等. 移植腎急性排斥擴散加權成像早期診斷價值.磁共振成像, 2016, 7(2): 90–95.
*Correspondence to: Huang HB, E-mail: jackie000528@163.com
Received 1 Nov 2015, Accepted 23 Dec 2015
ACKNOWLEDGMENTS This work was part of Guangxi scientific research and technology development project (No. GUIKEGONG1298003-8-6).
移植腎急性排斥是指供腎攜帶的異體抗原引起的受體內發生的免疫反應,細胞免疫類型在臨床上最常見,通常術后4天至2周發生,病理組織學以大量單核和淋巴細胞浸潤為特征,可通過激素沖擊逆轉大多數病例。急性排斥不僅是術后腎損害最常見和最重要的并發癥,也是慢性排斥和功能喪失、縮短移植腎生存期的重要原因[1],因此急性排斥早期診斷具有重要意義。活檢病理學作為急性排斥診斷金標準是一項有創性檢查,且存在穿刺出血、破裂、感染、不易耐受等不足[2-3]。而臨床血肌酐水平評估腎急性排斥亦無法達到早期、準確的診斷目的,因為該項指標只有明顯組織損傷才升高[4]。因此找尋一種高敏感度和特異性的無創技術實現急性排斥早期診斷,一直為移植腎及相關醫學研究所關注。筆者擬通過擴散加權成像掃描原位腎、移植正常腎和急性排斥移植腎3組志愿者,探索表觀擴散系數(apparent diffusion coefficient, ADC)在移植腎急性排斥早期診斷的價值。
1.1志愿者資料
選取2012年4月至2014年10月于解放軍第303醫院醫學影像科申請腎掃描原位正常腎51例(A組),男35例、女16例,年齡18~55歲,平均(34.9±10.9)歲;移植正常腎22例(B組),男16例、女6例,年齡16~57歲,平均(35.9±11.4)歲;急性排斥移植腎15例(C組),男10例、女5例,年齡25~53歲,平均(35.5±5.6)歲為志愿者入組研究。入組標準:原位正常腎無臨床癥狀,血肌酐、尿素氮及超聲無陽性指征;移植正常腎滿足術后3個月至5年,余標準同原位腎;急性排斥移植腎為術后1周~4周,臨床低熱、全身不適及尿量進行性減少,血肌酐>186.0 μmol/L、尿素氮>7.14 mmol/L并MR掃描后至治療前經穿刺活檢證實。研究實驗獲我院倫理委員會批準,志愿者知情并簽署同意書。
1.2設備與方法
Philips Achieva 3.0 T TX MR掃描儀,使用SENSE XL TORSO 16 coils配合呼吸門控,掃描前嚴格勻場和參考掃描,掃描序列包括橫斷位T1WI、T2WI、擴散加權成像(diffusion weighted imaging, DWI)與冠狀T2WI,掃描20層,5 mm/層,間隔0.5 mm,DWI序列擴散敏感梯度場在3個正交方向施加,b=0、100、800 s/mm2,EPI_factor=45,所有序列均為呼吸門控或呼吸觸發采集,余參數設置見表1,完成掃描保存原始數據。

表1 腎臟掃描序列參數設置Tab. 1 Protocol parameters for renal coronal & transverse scanning
1.3數據處理
腎掃描數據由受過良好培訓醫師使用工作站EWSv2.6.3軟件處理、校正獲得橫斷位ADC0-800圖,以ADC0-800圖為基礎定位腎皮質、腎髓質、同層肌肉,放置1~5個感興趣區(region of interest,ROI)(15~30 mm2)且避開偽影,軟件自動計算相應ADC值,取3次測量平均值為最終結果且將原位右腎測量值用于3組比較。
1.4統計分析
3組間性別與年齡無統計學意義(χ2性別=0.123,F年齡=0.342,P性別/年齡=0.426/0.734),組間具有可比性。
原位腎(右)、移植正常腎、急性排斥移植腎皮髓質及肌肉ADC0-800值(×10–3mm2/s)見表2。原位左腎皮髓質ADC0-800值分別為(1.97±0.22)及(1.67± 0.15),雙側皮質-皮質、髓質-髓質差值與0比較無統計學差異(t皮質/髓質=1.067/1.025,P皮質/髓質=0.812/0.833),見圖1。原位腎、移植正常腎皮質ADC0-800值高于髓質(圖1、2),其差值分別為(0.234±0.129)和(0.263±0.153),與總體0比較有統計學差異(t原位腎/移植腎=12.929/8.026,P均=0.000)。3組間腎皮質ADC值差異有統計學意義(P<0.05),3組腎髓質間、肌肉間ADC0-800值均無統計學意義(P>0.05),進一步兩兩比較發現腎皮質C組與A組、C組與B組間有統計學差異(P<0.05),而A組與B組間無統計學差異(P>0.05),見圖1~3。以病理為標準,取1.76×10–3mm2/s為閾值,皮質ADC0-800診斷移植腎急性排斥ROC曲線下面積為0.942,敏感度、特異性分別為86.7%和90.4%(圖4)。
志愿者腎臟高b值(0、800 s/mm2)ADC圖均滿足定量要求,正常組腎臟無腫脹滲出,T1WI腎皮髓質分辨清晰,DWI及高b值ADC圖髓質信號低于皮質;急性排斥腎實質腫脹滲出,T1WI圖皮髓質分辨不清,皮質擴散受限導致ADC圖皮髓質信號趨于一致(圖3A)。與低b值比較,高b值ADC圖更穩定、信噪比適中、腎邊界清楚,但皮髓質對比稍下降。

表2 3組腎皮髓質ADC值(單位:×10–3 mm2/s)Tab. 2 Kidney cortical & medullary ADC values(×10–3mm2/s) in the three groups
腎臟具有解剖與生理功能特殊性,其血流量占心輸量約25%,皮質灌注約為髓質10倍[5]。皮質由腎小體以及彎曲走行的近曲小管和遠曲小管組成表現為擴散各向同性,髓質則因腎小管及直小血管等結構而具有沿放射狀條紋方向擴散自由、垂直方向明顯擴散受限的各向異性[6]。同時腎小球每日可濾過180 L血漿,腎小管對濾過原尿重吸收和再分泌,通過逆流倍增等機制稀釋濃縮形成尿液,以維持體內電解質和酸堿平衡使腎臟成為含水豐富的器官[7]。腎臟這種高血流灌注、高水分子代謝的生理特點以及特殊的解剖結構成為DWI和擴散張量成像(diffusion tensor imaging, DTI)應用的理想器官。DWI[8]是目前活體測量組織水分子布朗運動的惟一技術,通過兩個以上b值掃描,采用單或雙指數模型計算ADC可反映組織微循環灌注和水分子活動狀態。單指數模型具有計算簡便、易用且只需要2個b值掃描,為目前應用最廣泛模型,但不能區分組織水分子真實擴散及微循環灌注。而雙指數模型基于Le Bihan等[9]提出的體素內無規律運動(intravoxel incoherent motion,IVIM)計算,能夠將組織內真實水分子擴散與微循環灌注假性擴散分離,精確地描述組織微觀結構及功能改變,在無外源性對比劑情況下反映組織微灌注信息,缺點是掃描時間長且計算繁雜。王雪元等[10]證實雙指數函數比單指數模型更適合于描述腎實質DWI信號強度隨b值的變化規律。DTI則賦于觀察者三維重組影像—擴散張量示蹤圖,用于顯示髓質放射狀纖維束樣結構走行、方向及排列疏密情況[11]。

圖1 男,22歲健康志愿者,原位腎。皮質(A)、髓質(B) ADC0-800值(×10–6mm2/s) 左右側分別為1990.7、1917.4,1637.5、1634.3,同層肌肉為1547.8 圖2 男,45歲患者,術后145天髂窩移植腎。皮髓質分辨尚清、ADC0-800值分別為2008.5和1667.7,肌肉為1543.1 圖3 女,26歲患者,髂窩移植腎10天。腎腫脹滲出,皮質擴散受限導致皮髓質對比不清,皮髓質ADC0-800分別為1713.2、1651.2,肌肉為1591.5(A),穿刺活檢提示T細胞免疫急性排斥(B) 圖4 ROC曲線。以腎皮質ADC0-800<1.76×10–3mm2/s預測移植腎急性排斥,敏感度和特異度分別為86.7%和90.4%,準確度為94.2%Fig. 1 Male, 22 years old healthy volunteer, a kidney in situ. The values of ADC0-800calculated were respectively 1990.7, 1917.4(A), 1637.5, 1634.3(B) on cortex, medulla of the left and right, and muscle ADC was 1547.8 at the same slice. Fig. 2 Male, 45 years old patient, a normal renal in iliac fossa after 145 d from operation. ADC0-800were 2008.5, 1667.7 respectively on cortex, medulla, Corticomedullary differentiation(CMD) was clear yet and muscle ADC was 1543.1. Fig. 3 Femal, 26 years old patient, a 10-day transplanted kidney with acute rejection. It showed swelling and exudation, CMD was dim resulting from the cortex disorder, ADC0-800were 1713.2, 1651.2 respectively on cortex, medulla, muscle ADC was 1591.5(A), Pathology showed the acute rejection with T cellular immunity(B). Fig. 4 The ROC curve. To predict acute rejection with ADC0-800<1.76×10–3mm2/s, the AUC was 94.2%, the sensibility was 86.7%, the specificity was 90.4%.
課題組應用3個正交方向施加擴散敏感梯度場的DWI(b=0、100、800 s/mm2)掃描,因低b值ADC圖像欠穩定、腎輪廓不清故以研究高b值ADC圖作為對象研究。結果發現,原位腎雙側比較無統計學差異(圖1 A、B),這是右腎代表原位腎與其余兩組比較的基礎。腎皮質ADC值(單位:× 10–3mm2/s)急性排斥組(1.68±0.14)明顯小于原位腎(1.92±0.13)及移植正常腎組(1.93±0.15),但正常組腎皮質間、3組髓質間均無統計學差異(P>0.05)。筆者分析原因可能為急性排斥發生時炎性效應、氧化應激、細胞因子釋放使腎皮質灌注降低、缺血腫脹,導致皮質含水減少及細胞外間隙縮小,最終造成水分子擴散受限、ADC值下降;而髓質小管結構排布相對疏松、炎癥滲出及血液向髓質分流引起含水量增加、部分抵消灌注降低作用使ADC值變化不明顯。實驗結果與國內外移植腎急性排斥研究[11-14]報告基本一致,Heusch[11]和Sadowski[14]研究發現,急性排斥腎皮質和髓質血流灌注均降低且血流重新分布,皮質ADC值明顯減低但髓質ADC值無明顯變化。同時以DWI[15]、IVIM-DWI[16]和DTI[17]研究亦證實移植腎實質ADC值與灌注、腎功能具有顯著相關性。課題中A組與B組間腎皮質、髓質無明顯差異和Blondin等[18]報道一致,但與Thoeny等[19]研究認為移植腎ADC值低于正常人不完全相同,可能與本組移植正常腎均為術后3個月以上病例,其功能狀態已經或基本恢復有關。實驗還同時顯示,A組和B組腎皮質ADC值均高于腎髓質(P<0.05),這與秦衛和[20]報道一致,分析可能與皮質灌注和含水量高、擴散各向同性而髓質小管狀結構各向異性擴散、含水量較低等有關。以1.76×10–3mm2/s為閾值,皮質ADC診斷急性排斥準確率分別為0.942,敏感度與特異性分別為86.7%、90.4%,提示腎皮質ADC值對急性排斥早期診斷具有較高價值,這也與國外研究[21]結論類似。
針對同層較穩定的肌肉進行分析,筆者發現表觀擴散系數3組間無統計學差異(P>0.05),這可大致認為磁體穩定性良好,進而證明不同組別和時間3組腎掃描數據有較高可信度,這是研究課題的一個創新點。
本研究尚存不足:(1)掃描僅采用一種機型完成,結論可能不完全適用其它型號或不同廠商、場強設備;(2)僅納入術后1周至4周急性排斥移植腎且病例數量相對較少,結果可能有所偏倚及無法準確反映更大時間跨度的急性排斥腎臟;(3)術后1周至4周且穿刺病理組織學證實的非急性排斥移植腎與急性排斥腎的診斷實驗評價尚未全部完成,這部分研究工作目前正在進行;(4)未能結合缺血、腎小管急性壞死、糖尿病腎損害等彌漫性腎病探討,不同原因腎病診斷與鑒別價值尚有待進一步實驗。
綜上所述,DWI掃描可基本實現移植腎急性排斥早期診斷,異常變化主要位于腎皮質。筆者推薦臨床3.0 T MRI應用中,DWI(b=800 s/mm2)掃描腎皮質ADC<1.76×10–3mm2/s可作為閾值用于移植腎急性排斥早期診斷。
參考文獻[References]
[1]Womer KL, Kaplan B. Recent developments in kidney transplantation: a critical assessment. Am J Transplant, 2009,9(6): 1265-1271.
[2]Schwarz A, Gwinner W, Hiss M, et al. Safety and adequacy of renal transplant protocol biopsies. Am J Transplant, 2005, 5(8): 1992-1996.
[3]Masin-Spasovska J, Spasovski G, Dzikova S, et al. Do we have to treat subclinical rejections in early protocol renal allograft biopsies?. Transplant Proc, 2007, 39(8): 2550-2553.
[4]Zhang JL, Rusinek H, Chandarana H, et al. Functional MRI of the kidneys. J Magn Reson Imaging, 2013, 37(2): 282-293.
[5]Chou SY, Porush JG, Faubert PF. Renal medullary circulation: hormonal control. Kidney Int, 1990, 37(1): 1-13.
[6]Fukuda Y, Ohashi I, Hanafusa K, et al. Anisotropic diffusion in kidney: apparent diffusion coefficient measurements for clinical use. J Magnetic Resonance Imaging, 2000, 11(2): 156-160.
[7]Wang HY. Nephrology(V2). Beijing: People's Medical Publishing House, 1996: 3-50.王海燕. 腎臟病學(第2版). 北京: 人民衛生出版社, 1996: 3-50.
[8]Yang ZH, Feng F, Wang XY. A guide to technique of magnetic resonance imaging. Beijing: People's Military Medical Press,2014: 263-264.楊正漢, 馮逢, 王霄英. 磁共振成像技術指南-檢查規范、臨床策略及新技術應用. 北京: 人民軍醫出版社, 2014: 263-264.
[9]Le Bihan D. Intravoxel incoherent motion perfusion MR imaging: a wake-up call. Radiology, 2008, 249(3): 748-752.
[10]Wang XY, Xin W, Hu CH, et al. Comparison of fitting degree in monoexponential and biexponential model used to assess multi b-value DWI of renal parenchyma and CCRCC. Chin J Magn Reson Imaging, 2014, 5(2): 102-106.王雪元, 刑偉, 胡春洪, 等. 腎及腎透明細胞癌多b值擴散成像的單雙指數擬合比較. 磁共振成像, 2014, 5(2): 102-106.
[11]Heusch P, Wittsack HJ, Krpil P, et al. Impact of blood flow on diffusion coefficients of the human kidney: a time-resolved ECG-triggered diffusion-tensor imaging(DTI) study at 3 T. J Magn Reson Imaging, 2013, 37(1): 233-236.
[12]Xu JJ, Xiao WB, Zhang L, et al. Value of diffusion-weighted MR imaging in diagnosis of acute rejection after renal transplantation. J Zhejiang Univ(Medical Sci), 2010, 39(2): 163-167.許晶晶, 肖文波, 張雷, 等. 磁共振擴散加權成像診斷移植腎急性排斥的應用研究. 浙江大學學報, 2010, 39(2): 163-167.
[13]Abou-El-Ghar ME, El-Diasty TA, El-Assmy AM, et al. Role of diffusion- weighted MRI in diagnosis of acute renal allograft dysfunction: a prospective preliminary study. Br J Radiol, 2012,85(1014): e206-211.
[14]Sadowski EA, Djamali A, Wentland AL, et al. Blood oxygenlevel-dependent and perfusion magnetic resonance imaging: detecting differences in oxygen bioavailability and blood flow in transplanted kidneys. Magn Reson Imaging, 2010, 28(1): 56-64.
[15]Wypych-Klunder K, Adamowicz A, Lemanowicz A, et al. Diffusion-weightedMR imaging of transplanted kidneys:Preliminary report. Pol J Radiol, 2014, 79: 94-98.
[16]Heusch P, Wittsack HJ, Heusner T, et al. Correlation of biexponential diffusion parameters with arterial spin-labeling perfusion MRI: results intransplanted kidneys. Invest Radiol,2013, 48(3): 140-144.
[17]Lanzman RS, Ljimani A, Pentang G, et al. Kidney transplant:functional assessment with diffusion-tensor MR imaging at 3 T. Radiology, 2013, 266(1): 218-225.
[18]Blondin D, Lanzman RS, Klasen J, et al. Diffusion-attenuated MRI signal of renal allografts: comparison of two different statistical models. AJR Am J Roentgenol, 2011, 196(6): 701-705.
[19]Thoeny HC, Dekeyzer F, Oyen RH, et al. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology, 2005,235(3): 911-917.
[20]Qin W, Fu FX, Chen YJ, et al. Diffusion weighted MR Imaging in normal human kidney. Chin J Med Imaging, 2012, 20(4): 244-247.
秦衛和, 付飛先, 陳艷姣, 等. 正常成人腎臟磁共振擴散成像研究. 中國醫學影像學雜志, 2012, 20(4): 244-247.
[21]Palmucci S, Mauro LA, Failla G, et al. Magnetic resonance with diffusion-weighted imaging in the evaluation of transplanted kidneys:updating results in 35 patients. Transplant Proc, 2012,44(7): 1884-1888.
Value of DWI to transplanted renals with early acute rejection: a preliminary study
LIANG Shi-wei1, HUANG Hai-bo2*, HUANG Gui-xiong2, GUAN Jun2, YANG Jianjun3, LIU Xu-yang41Department of Radiology, Guangxi CAPF Hospital, Nanning 530003, China2Department of Medical Imaging, 303rdHospital of PLA, Nanning 530021, China3Department of Pathology, 303rdHospital of PLA, Nanning 530021, China4Department of Pathology, 303rdHospital of PLA, Nanning 530021, China
Key wordsKidney transplantation; Graft rejection; Diffusion magnetic resonance imaging; Diffusion weighted imaging
AbstractObjective: To explore the value of DWI on transplanted renals with early acute rejection. Materials and Methods: Study protocol was approved by local ethics committee; informed consent was obtained. A total of 88 velunteers were enrolled and divided into three groups, as follows: Group A, 51 cases with healthy kidneys in situ;group B, 22 transplantation with stable renal function for at least 3 months after operating; and group C, 15 iliac allograft renals with early acute rejection from 1 week to 4 weeks after operating. T2W, T1W axial/coronal, and a transverse fat-saturated echo-planar DWI with 3 b-values(0, 100, 800 s/mm2) were performed on a 3.0 T scanner during normal breathing. EWS2.6.3 workstation was used to calculate the apparent diffusion coefficient(ADC) value of renal cortex, medulla, muscle respectively based on ADC0-800maps. Receiver operating characteristic(ROC) curve was used to predict the kidneys with early acute rejection. Results: No statistic significances were found for gender, age, ADC0-800of muscle among three groups(P>0.05), nor did ADC0-800values reveal a significant difference for left and right kidneys in situ(P>0.05). It showed renal cortex mean(+/-SD) ADC0-800values of (1.92±0.13), (1.93±0.15), (1.68±0.14)×10–3mm2/s for group A, B and C, respectively. Group C was significantly higher than both group A and B(P<0.05); however no statistic significance was found between group A and B(P>0.05); Nor did medullary ADC0-800values reveal a significant difference for 3 groups. While the differencebetween cortex and medulla was statistically significant for both groups A and B(P<0.05). With an ADC0-800<1.76×10–3mm2/s as diagnose critical points compared to biopsy, the sensibility was 86.7%, the specificity was 90.4%, and the accuracy was 0.942 in the prediction of the kidneys with early acute rejection. Conclusion: DWI is of important value in transplanted renals with early-stage acute rejection, it can provide reliable imaging evidence for treatment.
基金項目:廣西科學研究與技術開發計劃項目(編號:桂科攻1298003-8-6)
通訊作者:黃海波,E-mail: jackie000528@163. com
收稿日期:2015-11-01
中圖分類號:R445.2;R617
文獻標識碼:A
DOI:10.12015/issn.1674-8034.2016.02.002