王 琦,劉華紅,王 彬,張汝民,高 巖(浙江農林大學 亞熱帶森林培育國家重點實驗室培育基地,浙江 臨安311300)
?
7種槭樹釋放揮發性有機化合物組分分析
王琦,劉華紅,王彬,張汝民,高巖
(浙江農林大學 亞熱帶森林培育國家重點實驗室培育基地,浙江 臨安311300)
摘要:為探討槭樹Acer spp.釋放揮發性有機化合物(VOCs)的組分,采用動態頂空氣體循環法對苦茶槭A. ginnala,雞爪槭A. palmatum,三角槭A. buergerianum,樟葉槭A. cinnamomifolium,羊角槭A. yangJuechi,毛脈槭A. pubinerve和青榨槭A. davidii等7種植物釋放VOCs進行收集,利用熱脫附/氣相色譜/質譜(TDS-GC-MS)聯用技術對其組分進行分析。結果表明:不同樹種釋放VOCs種類與相對含量差異明顯??嗖栝屎颓嗾ラ史謩e釋放17種和20種成分,以酯類、醛類和醇類物質為主,相對含量較多的有乙酸葉醇酯、癸醛、(Z)-3-己烯-1-醇和壬醛;雞爪槭、三角槭和毛脈槭分別釋放15種、19種和23種成分,以萜類、酯類和醛類物質為主,相對含量較多的為羅勒烯、乙酸葉醇酯、癸醛、長葉烯和壬醛;樟葉槭釋放24種成分,以萜類化合物為主,相對含量較多的有羅勒烯、α-蒎烯、3-蒈烯、β-蒎烯和松油烯;羊角槭釋放25種成分,以萜類、醛類和醇類物質為主,相對含量較多的有癸醛、長葉烯、2-乙基-1-己醇、石竹烯和壬醛。以上7種槭樹均可作為保健型園林植物材料。圖3表1參29
關鍵詞:植物學;槭樹;揮發性有機化合物;熱脫附/氣相色譜/質譜聯用技術
浙江農林大學學報,2016,33(3):524-530
Journal of ZheJiang A&F University
植物通過次生代謝釋放的揮發性有機化合物(volatile organic compounds,VOCs)主要包括萜烯類、苯丙酸類/苯環型和脂肪酸衍生物[1-2]。這些VOCs是植物生長[3]、發育[4]和繁衍[5]以及抵抗不利條件[6-8]的重要手段,在人居環境中影響空氣質量[9]和人體健康[10-12]。隨著核磁共振和色譜等分析技術的發展,對園林樹木釋放VOCs的研究逐漸增多。目前,國內研究集中在油松Pinus tabuliformis,側柏Platycladus orientalis等針葉樹上[11, 13],而對闊葉樹較缺乏系統研究。槭樹Acer spp.隸屬槭樹科Aceraceae槭樹屬Acer闊葉喬木或灌木,主產于北溫帶地區,是溫帶落葉闊葉林、針闊混交林以及亞熱帶山地森林的建群種和重要組成,也是針葉林的伴生種,中國槭樹種類世界最多,許多槭樹為優良荒山綠化和園林造景樹種[14]。糖槭A. saccharum,五角楓A. mono,元寶楓A. truncatum,復葉槭A. negundo和挪威槭A. platanoides等釋放的VOCs具有信號傳導[15]、抑制昆蟲[16-17]和真菌[18]的作用,關于其他槭樹釋放VOCs尚未見報道。因此,本研究以槭樹為試驗材料,采用活體植株動態頂空氣體循環采集法與熱脫附/氣相色譜/質譜(TDS-GC-MS)聯用技術測定不同槭樹釋放VOCs,旨在探索槭樹釋放VOCs組分與規律,為進一步研究植物VOCs對環境質量的影響以及植物配置提供依據。
1.1材料
以浙江農林大學東湖校區7種不同槭樹苦茶槭Acer ginnala,雞爪槭A. palmatum,三角槭A. buergerianum,樟葉槭A. cinnamomifolium,羊角槭A. yangJuechi,毛脈槭A. pubinerve和青榨槭A. davidii為材料。采集健康無損傷,樹齡15 a左右植株枝葉釋放VOCs。
1.2 VOCs采集
于2013年7月10-20日上午10:00-11:00,采用動態頂空氣體循環法[11]采集7種槭樹枝葉釋放VOCs。選擇生長一致的葉片,采集葉片40片·次-1,3次重復。采氣袋容積為0.1 m3,采氣時間30 min,氣體流量0.1 m3·min-1。
1.3VOCs分析
VOCs分析采用TDS-GC-MS聯用技術,儀器及參數設置條件參考文獻[11]。TDS(德國GERSTEL公司TD3型)工作條件:系統載氣壓力20 kPa,進樣口溫度250℃,脫附溫度250℃,10 min,冷阱溫度-100℃,保持3 min,冷阱進樣時溫度驟然升至260℃。GC(7890A,Agilent安捷倫科技有限公司)工作條件:色譜柱為30.00 m×250.00 μm×0.25 μm的HP-5 MS柱;程序升溫;初始溫度40℃,4 min后以6℃·min-1的速率升至250℃,保持3 min后以10℃·min-1的速率升至270℃,保持5 min。MS (5975C,Agilent安捷倫科技有限公司)工作條件:電離方式為EI,電子能量為70 eV,質量范圍為4.67× 10-27~75.02×10-27,接口溫度280℃,離子源溫度230℃,四級桿溫度150℃。
1.4數據處理
采用NIST 2008譜圖庫兼顧色譜保留時間,同時結合手工檢索確定VOCs成分,利用峰面積歸一化法測定各組分的百分含量,數據處理采用Origin 8軟件。
2.1槭樹科7種植物釋放VOCs成分分析
槭樹科7種植物釋放的VOCs通過TDS-GC-MS分析(圖1),扣除本底空氣中的雜質后,共鑒定出48種化合物(表1)。其中苦茶槭鑒定出17種化合物,主要是酯類、醛類和醇類,包括乙酸葉醇酯(63.0%),癸醛(6.5%)和2-乙基-1-己醇(5.6%)等10種化合物,占VOCs總量的89.7%;雞爪槭檢測出15種化合物,主要是酯類、萜類和醇類,包括乙酸葉醇酯(49.6%),長葉烯(9.7%),2-乙基-1-己醇(11.7%)等11種化合物,占VOCs總量的85.5%;三角槭檢測出19種化合物,主要是萜類、醛類和酯類,包括羅勒烯(20.3%),長葉烯(10.6%),乙酸葉醇酯(13.0%),癸醛(11.3%)和壬醛(9.2%)等14種化合物,占VOCs總量的84.9%;樟葉槭檢測出24種化合物,主要為羅勒烯(24.4%),α-蒎烯(15.6%)和3-蒈烯(11.9%)等18種萜類化合物,占VOCs總量的96.6%;羊角槭檢測出25種化合物,主要是萜類、醛類和醇類,包括長葉烯(12.0%),石竹烯(10.1%),癸醛(14.9%),壬醛(8.6%)和2-乙基-1-己醇(11.8%)等17種化合物,占VOCs總量的81.1%;毛脈槭檢測出23種化合物,主要為萜類和酯類,包括羅勒烯(11.4%),長葉烯(8.9%)和乙酸葉醇酯(18.3%)等18種化合物,占VOCs總量的79.0%;青榨槭檢測出20種化合物,主要是醇類、酯類和醛類,包括乙酸葉醇酯(23.7%),癸醛(15.0%),壬醛(10.1%),(Z)-3-己烯-1-醇(11.1%)和2-乙基-1-己醇(7.7%)等11種化合物,占VOCs總量的80.9%。

表1 7種槭樹釋放揮發性有機化合物(VOCs)主要組分(平均值±標準偏差)Table 1 Main components of the volatile organic compounds released from branches and leaves in 7 Acer species(mean±SD)

表1 (續)Table 1 (Continued)
槭樹科7種植物釋放VOCs的共有成分是α-蒎烯、長葉烯、長葉環烯、雪松烯、石竹烯、反式-2-十二烯-1-醇、壬醛和癸醛等8種化合物,分別占苦茶槭、雞爪槭、三角槭、樟葉槭、羊角槭、毛脈槭和青榨槭各總量的20.5%,26.7%,46.2%,19.8%,57.2%,29.9%和38.0%。常綠樹樟葉槭與落葉樹苦茶槭、雞爪槭、三角槭、羊角槭、毛脈槭和青榨槭共有成分分別為21.5%,32.6%,70.0%,67.4%,55.4%和43.9%。特有成分最多的是樟葉槭(24.4%),其次是青榨槭(12.7%)、毛脈槭(4.2%)、三角槭(3.9%)、羊角槭(3.3%)和雞爪槭(1.3%)。

圖1 7種槭樹釋放VOCs的總離子流圖Figure 1 Total ion current of volatile organic compounds released from branches and leaves in 7 Acer species
2.2槭樹科7種植物釋放VOCs種類及差異性比較
7種槭樹科植物釋放VOCs種類和相對含量存在顯著差異(圖2)??嗖栝使灿?類化合物,萜類6種(8.6%),醇類4種(11.0%),酯類4種(67.6%),醛類2種(11.2),烴類1種(1.6%);雞爪槭含有萜類、烴類、醛類等5類化合物,萜類7種(20.1%),醇類1種(11.9%),酯類3種(52.9%),醛類2種(9.6%),含氮化合物1種(3.1%);三角槭包括萜類、酮類、醛類等6類化合物:萜類8種(46.1%),醇類2種(10.3%),酯類3種(17.0%),醛類3種(21.9%),酮類2種(2.6%),含氮化合物1種(2.2%);樟葉槭含有萜類、醇類、醛類等5類化合物:萜類18種(96.6%),醇類1種(0.4%),醛類3種(2.3%),酮類1種(0.3%),含氮化合物1種(0.5%);羊角槭含有萜類、醇類、酯類等6類化合物,萜類9種(36.7%),醇類5種(19.3%),酯類3種(9.6%),醛類3種(25.1%),酮類3種(7.2%),烴類2種(2.1%);毛脈槭含有萜類、醇類、酯類等4類化合物,萜類15種(54.9%),醇類3種(11.3%),酯類3種(24.1%),醛類2種(9.7%);青榨槭含有萜類、醇類、脂類等6類化合物,萜類6種(14.4%),醇類6種(27.2%),酯類2種(27.1%),醛類3種(26.6%),酮類2種(3.2%),烴類1種(1.5%)。萜類化合物含量最高的是樟葉槭,其相對含量分別是苦茶槭、雞爪槭、三角槭、羊角槭、毛脈槭和青榨槭的14.6倍、4.8倍、2.1倍、2.6倍、2.8倍和6.7倍。在苦茶槭VOCs中脂類化合物相對含量最高,其相對含量是雞爪槭、三角槭、羊角槭、毛脈槭和青榨槭的1.3倍、4.0倍、7.1倍、2.8倍和2.5倍,在樟葉槭中未檢測到。

圖2 7種槭樹釋放VOCs的相對含量Figure 2 Relative contents of VOCs from branches and leaves in 7 Acer species

圖3 7種槭樹釋放VOCs的種類Figure 3 Constituents of VOCs from branches and leaves in 7 Acer species
本研究對華東地區生長的7種槭樹釋放VOCs研究表明:同屬不同種間植物釋放VOCs種類和相對含量差異明顯。常綠樹樟葉槭與落葉類釋放VOCs差異較大,說明槭樹中常綠類與落葉類釋放VOCs差異可能不完全反應組系差異。落葉類槭樹間釋放VOCs差異較小,共有成分較高(占63.0%~96.0%),其中雞爪槭在落葉類中共有成分最高(占91.0%~94.0%),可能為所測落葉類槭樹釋放VOCs的核心類型。本研究中苦茶槭和雞爪槭主要成分是酯類物質(50.0%以上),與張風娟等[16]測定華北地區生長的4種落葉類槭樹釋放成分一致;羊角槭釋放的α-蒎烯、β-蒎烯、乙酸葉醇酯、長葉烯、長葉環烯和石竹烯等物質,在宋秀華等[19]測試的元寶楓7月釋放VOCs中也檢測到。這可能與采集方法、發育節律[19]、外界條件[20]、生長地域及親緣關系等因素有關,槭樹釋放VOCs調控規律還需深入研究。
萜類化合物在藥劑預防和治療心血管疾病、癌癥以及抗菌、抗炎、抗病毒、抗氧化劑、抗高血糖等生物活性方面扮演著一定角色[21]。石竹烯具有鎮靜、抗焦慮、抗抑郁[22],抗炎[22]和抗腫瘤活性[23];α-蒎烯[24]、3-蒈?。?5]、β-蒎烯[26]能抗炎鎮痛;羅勒烯是重要信號分子,抗菌殺蟲[27],抗白血病腫瘤細胞增殖[28];萜品油烯能有效抑制低密度脂蛋白氧化[29]。槭樹均釋放α-蒎烯、石竹烯等萜類物質,樟葉槭富含羅勒烯、α-蒎烯、3-蒈烯、β-蒎烯和萜品油烯,三角槭和毛脈槭主要釋放羅勒烯,羊角槭主要釋放石竹烯,推測所測槭樹有不同程度的保健功能,可作為保健型園林植物材料。苦茶槭和雞爪槭富含的乙酸葉醇酯(63.1%,49.6%)是一種具有香蕉氣味的高級香料,推測其還可種植提取香精。萜類及C6~C10醇醛類物質對細菌、真菌和放線菌有抑制作用[11,18,21],說明槭樹具有良好殺菌價值。建議在公園或小區的林蔭步道、鍛煉區、保健區等活動場所適量配置槭樹,以抑制微生物、改善空氣質量、預防疾病,發揮槭樹資源優勢,構建優美人居環境。
[1]DUDAREVA N, PICHERSKY E. Biochemical and molecular genetic aspects of floral scents[J]. Plant Physiol, 2000, 122(3):627 - 634.
[2]DIXON R A. Natural products and plant disease resistance[J]. Nature, 2001, 411(6839):843 - 847.
[3]左照江,張汝民,王勇,等.冷蒿揮發性有機化合物主要成分分析及其地上部分結構研究[J].植物生態學報,2010,34(4):462 - 468. ZUO Zhaojiang, ZHANG Rumin, WANG Yong, et al. Analysis of main volatile organic compounds and study of aboveground structures in Artemisia frigid[J]. Chin J Plant Ecol, 2010, 34(4):462 - 468.
[4]PICHERSKY E, GERSHENZON J. The formation and function of plant volatiles:perfumes for pollinator attraction and defense[J]. Curr 0pin Plant Biol, 2002, 5(3):237 - 243.
[5]BALDWIN I T, HALITSCHKE R, PASCHOLD A, et al. Volatile signaling in plant-plant interactions:“talking trees”in the genomics era[J]. Science, 2006, 311(5762):812 - 815.
[6]SINGSAAS E L, LERDAU M, WINTER, K., et al. Isoprene increases thermotolerance of isoprene-emitting species [J]. Plant Physiol, 1997, 115(4):1413 - 1420.
[7]LORETO F, VELIKOVA V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes[J]. Plant Physiol, 2001, 127(4):1781 - 1787.
[8]LORETO F, PINELLI P, MANES F, et al. Impact of ozone on monoterpene emissions and evidence for an isoprenelike antioxidant action of monoterpenes emitted by Quercus ilex leaves[J]. Tree Physiol, 2004, 24(4):361 - 367.
[9]CALFAPIETRA C, FARES S, MANES F, et al. Role of biogenic volatile organic compounds(BVOC)emitted by urban trees on ozone concentration in cities:a review[J]. Environ Pollut, 2013, 183:71 - 80.
[10]鄭華,金幼菊,周金星,等.活體珍珠梅揮發物釋放的季節性及其對人體腦波影響的初探[J].林業科學研究,2003,16(3):328 - 334. ZHENG Hua, JIN Youju, ZHOU Jinxing, et al. A preliminary study on human brain waves influenced by volatiles released from living Sorbaria kirilowii(Regel)Maxim. in different seasons[J]. For Res, 2003, 16(3):328 - 334.
[11]GAO Yan, JIN Youju, LI Haidong, et al. Volatile organic compounds and their roles in bacteriostasis in five conifer species[J]. J Integr Plant Biol, 2005, 47(4):499 - 507.
[12]LEE J, PARK B J, TSUNTESUGU Y, et al. Effect of forest bathing on physiological and psychological responses in young Japanese male subjects[J]. Public Health, 2011, 125(2):93 - 100.
[13]李娟,王成,彭鎮華,等.側柏春季揮發物濃度日變化規律及其影響因子研究[J].林業科學研究,2011,24 (1):82 - 90. LI Juan, WANG Cheng, PENG Zhenhua, et al. The diuranal variation and influence factors of VOC of Platycladus orientalis in spring[J]. For Res, 2011, 24(1):82 - 90.
[14]徐廷志.槭樹科的地理分布[J].云南植物研究,1996,18(1):43 - 50. XU Tingzhi. Phytogeography of the family Aceraceae[J]. Acta Bot Yunnan, 1996, 18(1):43 - 50.
[15]BALDWIN I T, SCHULTZ J C. Rapid changes in tree leaf chemistry induced by damage:evidence for communication between plants[J]. Science, 1983, 221(4607):277 - 279.
[16]張風娟,金幼菊,陳華君,等.光肩星天牛對4種不同槭樹科寄主植物的選擇機制[J].生態學報,2006,26 (3):870 - 877. ZHANG Fengjuan, JIN Youju, CHEN Huajun, et al. The selectivity mechanism of Anoplophora glabripennison four different species of maples[J]. Acta Ecol Sin, 2006, 26(3):870 - 877.
[17]張風娟,金幼菊.茉莉酸甲酯噴施和光肩星天牛Anoplophora glabripennis(Motschulsky)咬食后五角楓釋放的揮發物[J].生態學報,2007,27(7):2990 - 2996. ZHANG Fengjuan, JIN Youju, Comparison of volatiles from Anoplophora glabripennis(Motsch.)and methyl jas-monate(MeJA)-applied Acer mono Maxim to identify wound signal transduction pathways[J]. Acta Ecol Sin, 2007, 27(7):2990 - 2996.
[18]張風娟,李繼泉,徐興友,等.皂莢和五角楓揮發性物質組成及其對空氣微生物的抑制作用[J].園藝學報,2007,34(4):973-978. ZHANG Fengjuan, LI Jiquan, XU Xingyou, et al. The volatiles of two greening tree species and the antimicrobial activity[J]. Acta Hortic Sin, 2007, 34(4):973-978.
[19]宋秀華,李傳榮,許景偉,等.元寶楓葉片揮發物成分及其季節差異[J].園藝學報,2014,41(5):915 - 924. SONG Xiuhua, LI Chuanrong, XU Jingwei, et al. The analysis of volatile organic compounds and seasonal differences emitted from leaves of Acer truncatum[J]. Acta Hortic Sin, 2014, 41(5):915 - 924.
[20]LI Jianguang, JIN Youju, LUO Youqing, et al. Leaf volatiles from host tree Acer negundo:Diurnal rhythm and behavior responses of Anoplophora glabripennis to volatiles in field[J]. Acta Bot Sin, 2003, 45(2):177 - 182.
[21]BAKKALI F, AVERBECK S, AVERBECK D, et al. Biological effects of essential oils-a review[J]. Food Chem Toxicol, 2008, 46(2):446 - 475.
[22]GHELARDINI C, GALEOTTI N, MANNELLI L D C, et al. Local anaesthetic activity of β-caryophyllene[J]. Il Farmaco, 2001, 56(5):387 - 389.
[23]da SILVA S L, FIGUEIREDO P, YANO T. Chemotherapeutic potential of the volatile oils from Zanthoxylum rhoifolium Lam leaves[J]. Eur J Pharmacol, 2007, 576(1):180 - 188.
[24]ORHAN I, KüPELI E, ASLAN M, et al. Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, Pistacia vera L.[J]. J Ethnopharmacol, 2006, 105(1):235 - 240.
[25]OCETE M A, RISCO S, ZARZUELO A, et al. Pharmacological activity of the essential oil of Bupleurum gibraltaricum:anti-inflammatory activity and effects on isolated rat uteri[J]. J Ethnopharmacol, 1989, 25(3):305 - 313.
[26]LIAPI C, ANIFANDIS G, ANIFANTIS G, et al. Antinociceptive properties of 1, 8-Cineole and beta-pinene, from the essential oil of Eucalyptus camaldulensis leaves, in rodents[J]. Planta Med, 2007, 73(12):1247 - 1254.
[27]SINGH G, SINGH O P, de LAMPASONA M P, et al. Studies on essential oils. Part 35:chemical and biocidal investigations on Tagetes erecta leaf volatile oil[J]. Flavour Frag J, 2003, 18(1):62 - 65.
[28]SAAB A M, TUNDIS R, LOIZZO M R, et al. Antioxidant and antiproliferative activity of Laurus nobilis L.(Lauraceae)leaves and seeds essential oils against K562 human chronic myelogenous leukaemia cells[J]. Nat Prod Res, 2012, 26(18):1741 - 1745.
[29]GRASSMANN J, HIPPELI S, SPITZENBERGER R, et al. The monoterpene terpinolene from the oil of Pinus mugo L. in concert with α-tocopherol and β-carotene effectively prevents oxidation of LDL[J]. Phytomedicine, 2005, 12(6):416 - 423.
Component analysis of volatile organic compounds from branches and leaves in seven Acer species
WANG Qi, LIU Huahong, WANG Bin, ZHANG Rumin, GAO Yan
(The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an 311300, Zhejiang, China)
Abstract:To analyze the volatile organic compounds(VOCs)released in Acer spp., VOCs from the branches and leaves of Acer ginnala, Acer palmatum, Acer buergerianum, Acer cinnamomifolium, Acer yangJuechi, Acer pubinerve, and Acer davidii were collected and analyzed by the dynamic headspace air-circulation method and thermal desorption system/gas chromatograhpy/mass spectrum(TDS-GC-MS). Results showed that the species of VOCs and their relative proportions varied significantly with species of Acer spp., A. ginnala and A. davidii released 17 and 20 kinds of VOCs, respectively, most of which were esters, aldehydes, and alcohols, such as 3-hexen-1-ol acetate, decanal,(Z)-3-hexen-1-ol, and nonanal. A. palmatum, A. buergerianum, and A. pubinerve released 15, 19, and 23 kinds, respectively, most of which were terpenes, esters, and aldehydes, such as ocimene, 3-hexen-1-ol acetate,(Z)-decanal, longifolene, and nonanal. A. cinnamomifolium released 24 kinds of VOCs, most of which were terpenes, such as ocimene,α-pinene, 3-carene,β-pinene, and terpinene. A. yangJuechi released 25 kinds, most of which were terpenes, aldehydes, and alcohols, such as decanal, longifolene, 2-ethyl-1-hexanol, caryophyllene, and nonanal. Thus, the health function of VOCs from these Acer species could be utilized in healthcare gardens.[Ch, 3 fig. 1 tab. 29 ref.]
Key Words:botany;Acer;volatile organic compounds;TDS-GC-MS
中圖分類號:S718.3;S685.99
文獻標志碼:A
文章編號:2095-0756(2016)03-0524-07
doi:10.11833/j.issn.2095-0756.2016.03.022
收稿日期:2015-01-24;修回日期:2015-12-10
基金項目:國家自然科學基金資助項目(31270756,31470704)
作者簡介:王琦,從事園林植物研究。E-mail:hankywang@hotmail.com。通信作者:王彬,實驗師,從事植物生理生態研究。E-mail:wangbin@zafu.edu.cn