999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE APPLICATION OF THE BASIN OF ATTRACTION TO THE EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR THE SECOND ORDER PARABOLIC BOUNDARY VALUE PROBLEM

2016-10-13 08:12:17FENGYanqingWANGZhongying
數學雜志 2016年5期
關鍵詞:拋物線

FENG Yan-qing,WANG Zhong-ying

(School of Mathematics and Chemical Engineering,Changzhou Institute of Technology,Changzhou 213000,China)

THE APPLICATION OF THE BASIN OF ATTRACTION TO THE EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR THE SECOND ORDER PARABOLIC BOUNDARY VALUE PROBLEM

FENG Yan-qing,WANG Zhong-ying

(School of Mathematics and Chemical Engineering,Changzhou Institute of Technology,Changzhou 213000,China)

In this paper,a new sufficient condition of the existence and uniquence of the second order parabolic boundary value problem is given by using the basin of attraction and the comparison theorem,which generalize some existed theorems.

the basin of attraction;homeomorphism;initial value problem;the second order parabolic boundary value problem

2010 MR Subject Classification:35K20

Document code:AArticle ID:0255-7797(2016)05-0949-06

1 Introduction

We will study the parabolic operator

acting on functions in D=?×[0,T],where aij(x,t)∈(D),bi,a∈L∞(D),c=c(x)∈(?)and ? is a connected bounded subset of n-dimensional space.

Using a continuous method,Sigillito exlpored the solution for the heat equation,see[1]. Elcart and Sigillito derived an explicit coercivity inequality‖|u|‖≤const‖Lau‖0and gave a sufficient condition for the existence and uniqueness of solution to the the second order parabolic,see[2].

Recently,in this area,the global diffeomorphism theorem was used to prove the existence and uniqueness of solutions of nonlinear differential equation of certain classes.In addition,many authors were extensively investigated this problem,see Mayer[3],Plastock [4],Radulescu and Radulescu[5],Shen Zuhe[6-7],Zampieri[8].These theorems may be used for solving nonlinear systems of equation.

Motivated by these results,we shall utilize an interesting tool,the attraction basin to give a new set of sufficient condition for the existence and uniqueness of the second order parabolic boundary value problems in this paper,which can be founded in Section 3.Using our approach it is easy to obtain results of Elcart and Sigillito.Moreover,the methods apply not only to this problem but also to other nonlinear diffierential equations.

2 Preliminaries

In this section,we will state some lemmas which are useful to our results.First,we introduce the basin of attraction.

Lemma 2.1(see[8])Let G,F be Banach spaces,D be an open subset of G,x0∈D and f:D?G→F be a C1mapping and a local homeomorphism.Then for any x∈D,the path-lifting problem has a unique continuous solution t→γx(t)defined on the maximal open interval Ix= (tx-,tx+),-∞≤tx-,tx+≤+∞.Moreover,the set{(x,t)∈D×R:t∈Ix}is open in D×R and the mapping is(x,t)→γx(t)continuous.

Definition 2.1[8]In the setting of Lemma 2.1,the basin of attraction of x0is the set

Theorem 2.1[9]With the above setting,f is a global homeomorphism onto Y if and only if γx(t)is defined on R for all x∈A,namely,γx(t)can also be extended to-∞.

Lemma 2.2(see[8])Let X be Banach space,a,b∈R and p:[a,b]→X be a C1mapping on[a,b].Then‖p(t)‖has derivative‖p(t)‖'almost everywhere and‖p(t)‖'≤‖p(t)‖for a<t<b.

Second,the following comparison theorem play an important role to prove the sufficient condition for the existence of a unique solution of problem(1.1).

Let E be an open(t,x)-set in R2and g∈C[E,R].Consider the scalar differential equation with an initial condition

Theorem 2.2(Comparison theorem in[9])With the above setting,suppose that[t0,t0+ b)is the largest interval in which the maximal solution r(t)of(2.2)exists.Let

and for a fixed Dini derivative

where T denotes an almost countable subset of t∈[t0,t0+b)T,then

3 Existence Theorem

Consider the boundary value problem

where ut∈L2([0,T](?)).Let W0(D)denote the Hilbert space with the norm

where|D2u|2represents the sum of the a squares of all the second derivatives with respect to space variables and ν is positive constant.

The following assumptions are needed later.

A1 The boundary of ? is piecewise smooth with nonnegative mean curvature everywhere.

A2 f:W0(D)→L2(D)is continuous and a bounded function of t,x1,···,xn,u.

Elcart and Sigillito gave the following inequality in[2].

Lemma 3.1If u∈W0,then

where

Denote Mu=aijuxixj+biuxi-cut,then M is the linear operator from W0(D)to L2(D). We may express(3.1)in the form

For u,φ∈W0(D),we have

Define

Theorem 3.1In the setting of the above,equation(1.1)exists a unique solution if the following conditions hold

(2)for each,the maximum solution of the initial value problem

ProofWe have from(2.1)and Lemma 2.2 that

By assumption A2,we know the maximum solution y(t)of(3.3)is defined on[0,c)and there exists a sequence tn→c as n→∞such that

is finite.It follows that y(t)is continuous on[0,c)and there is a constant M such that

By the comparison theorem,we have

From conditions A1,A2 and condition(1),since λ=inf0 is the lowest eigenvalue of-Δ in ?,it follows that for all u∈W0(D),zero is not an eigenvalue ofMφ-au(x,u(t,x))φ,so for every u∈W0(D),the operator F'(u)=M-auI is invertible and F is a local homeomorphism from W0(D)onto L2(D),where I denotes the identical operator.

Then in view of Theorem 2.1,we need only show that for all x∈A,γx(t)can also be extended to-∞,namely,we need consider the problem in the opposite direction.

Let g(-h)=γx(t),t∈(a,0],h∈[0,-a),a<0 for t1,t2∈(a,0],we have

So γx(t)is Lipschitz continuous on(-a,0],γx(t)can also be extended to-∞,the theorem is proved.

Elcart and Sigillito[2]studied the following initial-boundary value problem

where??∈C2and f is continuous and has three derivatives with respect to u.Problem (3.4)may be formulated as an operator equation Pu=0,where Pu=Mu-f(x,u)is a mapping of W0(D)onto L2(D).

Corollary 3.1 Assume that f satisfies

for positive constant α,β,then δ(t)≤ω1(t),and thus

RemarkCondition(ii)in Corollary 3.1 can be replaced with=O(u),because=∞holds.The result of Elcart and Sigillito in[2]becomes a special case of Theorem 3.1.

References

[1]Sigillito V G.On a continuous method for approximating solution of the heat equation[J].Assoc. Comp.Mach.,1967,14(5):732-741.

[2]Elcrat A R,Sigillito V G.An explicit a priori estimate for parabolic equations with applications to semilinear equations[J].J.Math.Anal.Appl.,1976,7(5):746-753.

[3]Meyer G H.On solving nonlinear eauations with a one-parameter operator imbedding[J].SIAM.J. Numer.Anal.,1968,5(5):739-752.

[4]Plastock R.Homeomorphism between Banach space[J].Trans.Amer.Math.Soc.,1974,200(3):169-183.

[5]Elcrat A R,Sigillito V G.Coercivity for a third order Pseudoparabolic operator with applications to semilinear equations[J].J.Math.Anal.,1977,61(3):841-849.

[6]Shen Z H.On the periodic solution to the Newtonian equation of motion[J].Nonl.Anal.,1989,13(2):145-149.

[7]Shen Z H,Wolfe M A.On the existence of periodic solution of periodically perturbed conservative systems[J].Math.Anal.Appl.,1990,153(1):78-83.

[8]Zampieri G.Diffeomorphisms with Banach space domains[J].Nonl.Anal.,1992,19(10):923-932.

[9]Lakshmikantham V,Leeda S.Differential and integral inequalities Vol.II[M].New York:Academic Press,1969.

[10]Feng Y Q,Wang Z Y.Global homeomorphism and the existence of solutions for periodically perturbed conservative systems[J].J.Nanjing Univ.Math.Biqu.,2011,28(1):24-32.

[11]Cai Xinmin.Coupled fixed point theorem for a kind of nonlinear operators[J].J.Math.,2002,22(2):162-164.

吸引盆在二階拋物線邊值問題解存在唯一性中的應用

馮艷青,王忠英
(常州工學院數理與化工學院,江蘇常州213000)

本文研究了二階拋物線邊值問題解的存在唯一性的問題.利用吸引盆的方法和全局同胚理論,推導出二階拋物線邊值問題解存在唯一性的一個充分條件,從而推廣了已經存在的一些定理.

吸引盆;全局同胚;初值問題;二階拋物線邊值問題

MR(2010)主題分類號:35K20O175.26

date:2014-04-14Accepted date:2015-01-04

Supported by the Natural Science Foundation of JiangSu(13KJD110001).

Biography:Feng Yanqing(1969-),female,born at Yiwu,Zhejiang,associate professor,major in nonlinear function analysis and application.

猜你喜歡
拋物線
拋物線焦點弦的性質及應用
選用合適的方法,求拋物線的方程
巧用拋物線定義妙解題
拋物線高考滿分突破訓練(B卷)
巧求拋物線解析式
阿基米德三角形在拋物線中的應用
賞析拋物線中的定比分點問題
巧用拋物線的對稱性解題
巧用拋物線的對稱性解題
拋物線變換出來的精彩
主站蜘蛛池模板: 一本大道AV人久久综合| 一区二区三区高清视频国产女人| 久久久久中文字幕精品视频| 日韩高清无码免费| 日韩在线播放中文字幕| 97超级碰碰碰碰精品| 亚洲有无码中文网| 亚洲精品天堂在线观看| 狠狠五月天中文字幕| 精品伊人久久久香线蕉| 午夜精品福利影院| 91精品啪在线观看国产91九色| 亚洲第一黄片大全| 国产精品久久精品| 色成人亚洲| 中文字幕佐山爱一区二区免费| 亚洲天堂网在线播放| 日韩毛片免费视频| 67194在线午夜亚洲| 久久久久久久久18禁秘| 中文无码影院| 中文字幕乱妇无码AV在线| 男女精品视频| 一区二区三区成人| 国产综合精品日本亚洲777| 青草娱乐极品免费视频| 国产情侣一区| 欧美一区二区三区国产精品| 欧美日韩一区二区在线免费观看 | 无码精品国产dvd在线观看9久| 国产aⅴ无码专区亚洲av综合网| 伊人激情久久综合中文字幕| 婷婷午夜影院| 日韩最新中文字幕| 国产精品极品美女自在线| 欧美黑人欧美精品刺激| 国产成人久久综合一区| 丁香六月综合网| 欧美在线网| 97精品伊人久久大香线蕉| 青青草原国产| 久久香蕉国产线看精品| 亚洲无码高清一区| 国内精品91| 无码中字出轨中文人妻中文中| 日本福利视频网站| 韩国福利一区| 精品国产电影久久九九| 国产成人综合在线视频| AV网站中文| 亚洲综合第一区| 国产区人妖精品人妖精品视频| 久久综合五月| 国产精品第| 亚洲午夜国产精品无卡| 日本国产精品一区久久久| 国禁国产you女视频网站| 久久精品亚洲专区| 四虎成人精品在永久免费| 在线色综合| 亚洲天堂免费在线视频| 再看日本中文字幕在线观看| 国产一区二区三区免费观看 | 亚洲熟女中文字幕男人总站| 国产美女无遮挡免费视频网站 | 伊人久久青草青青综合| 国产理论一区| 成人字幕网视频在线观看| 国产一区二区免费播放| 国产农村1级毛片| 亚洲人成影院午夜网站| 亚洲有码在线播放| 无码中文字幕乱码免费2| 熟妇无码人妻| 欧美高清三区| 人人看人人鲁狠狠高清| 精品视频一区二区观看| 精品小视频在线观看| 日本人又色又爽的视频| 波多野结衣一区二区三区88| 色婷婷综合在线| 国产成人高清精品免费软件|