


摘?要:近年來,考查學生幾何識圖能力逐步增加,學生面對題目中提供幾何圖形不能理解,束手無策,識圖能力較弱是重要原因之一。學生會看圖、讀圖,有助于理解基本的數學概念,是學生幾何素養的重要體現。
關鍵詞:辨圖;畫圖;賞圖
一、 辨圖——加強變式教學,辨析基本圖形
《數學課程標準》在幾何方面的學習要求學生“能從較復雜的圖形中分解出基本的圖形,并能分析其中的基本元素及其關系,利用直觀來進行思考?!痹诔踔薪虒W中,距離最短問題一直貫徹在整個初中階段。做這一類的題目的理論依據是兩點之間線段最短,或者是利用軸對稱的知識來解決。例題:如圖1,AB兩村在一條小河的異側,要在河邊建一水廠向兩村供水。若要使自來水廠到兩村的輸水管用料最省,廠址Q應選在哪個位置?請將符合上述情況的自來水廠的廠址標出,并保留作圖痕跡。
變式1:如圖2,若AB兩村在這條小河的同側,若要使自來水廠Q到兩村的輸水管用料最省,應如何來作圖?
變式2:如圖3,點D、E分別在△ABC邊AB和BC上,請在AC上作一個點P,使△DEP的周長最小。
變式3:如圖4,正方形ABCD的邊長為4。E是AB邊上的中點,P點在對角線AC上運動,求△PBE周長的最小值。
在上述題中,不斷地改變問題的條件:在河同側變為異側,一條線變兩條線,兩條線變三條線(三角形)、四條線(正方形)問題,最終都可轉化為例1教師引導學生遇到問題能從復雜的圖形中分辨出基礎圖形。一方面老師在教學中,抓住基本圖形中隱含的定理,應用變式教學強化基本圖形;另一方面,引導學生對基本圖形的理解不要浮于表面,透過現象看本質。
二、 畫圖——揭示定理本質,畫“繁”為“簡”
在幾何題中,動點問題往往是令多數學生頭痛的題,遇“動”則“不動”。究其原因,探索不出圖形位置、數量關系的“變”與“不變”性,而這其中恰恰包含對象之間的幾何和數量關系。
例如,如圖,已知Rt△ABC的直角邊AC與Rt△DEF的直角邊DF在同一條直線上,且AC=60cm,BC=45cm,DE=6cm,EF=8cm?,F將點C與點F重合,再以4cm/s的速度沿CA方向移動△DEF;同時,點P從點A出發,以5cm/s的速度沿AB方向移動,設移動時間為t(s),以點P為圓心,3t(cm)長為半徑的⊙P與AB相交于點M、N,當點F與點A重合時,Rt△DEF與點P同時停止移動。在移動的過程中,是否存在⊙P與Rt△DEF的兩條直角邊所在的直線同時相切的時刻?若存在,求出t的值;若不存在,說明理由。多數學生是糾結圓與兩條直線相切的圖形始終畫不恰當,導致找不出等量關系。但若抓住切線性質定理的本質,會發現沒必要畫出圓。如圖,分類出⊙P在直線EF的左側、右側兩種情況后,原圖中圓不必畫出,只需過點P分別畫垂直于EF、AC的垂線段,這兩條垂線段的長度都為半徑長,繼而轉化到AC線段,得出數量關系。
教師要引導學生解決動點問題畫圖策略:1. 全面地閱讀題目。充分掌握運動的形式和方式,尋找到在運動中變與不變位置關系;2. 給圖形適當地做“減法”。把在運動中導致圖形本質發生變化的圖形畫出來,剔除干擾圖形;3.
建立起對應的數學模型最終求解??傊?,解決動態幾何問題畫圖的關鍵是把握圖形運動與變化的全過程,轉化為靜態圖形,以不變應萬變。
三、
賞圖——借助幾何畫板,反思幾何識圖
幾何畫板是信息技術與幾何教學整合的主要工具之一,其直觀的動態演示功能,為學生搭建了探索幾何圖形內在關系的平臺,提供給學對圖形的感性認識,形成豐富的識圖經驗。當然,作為教師在這個過程中應引導學生動手畫圖思考,重點是演示之后學生的總結反思,讓幾何畫板成為教學的工具之一,而不是完全依賴它。
例如,如圖,在邊長為2的菱形ABCD中,∠A=60°,M是AD邊的中點,若線段MA繞點M旋轉到線段MA′,連接A′C,則A′C長度的最小值是????。
先讓學生嘗試畫出點A′的運動路線,待學生獨立分析過后,教師再操作幾何畫板動態演示,師生共同從總結此題背后的基本圖形:在圓上找一點A′,使得圓外點C離A′最近,即A′就是MC與圓的交點。針對此題,筆者引導學生做如下反思:
1.
思考過程的反思。通過教師分析及演示后,首先反思自身知識點提取是否熟練:本題涉及哪些重要知識點?然后反思方法是否熟練:用到哪種方法?解題思路是什么?今后遇到這類題又該如何解?最要總結其中的經驗教訓,批注重要的反思。這樣使學生能夠從不同角度觀察圖形,思考問題,養成勤于思考的習慣,提升識圖能力。
2.
知識方法的反思。在我的思維活動中運用了哪些聯想?它們是如何被想到的?我還能把它應用到什么情景中去。引導學生要善于把題目歸類,找出題目中共性的地方,將基本圖形畫在此題的旁邊。學生從中總結解題思路,掌握解題的技巧和方法,往往會達到事半功倍的效果。通過此題的研究,教師再舉一反三加以鞏固。
學生在教師為其提供的幾何情境中經歷發展過程,經歷從具體到抽象、從特殊到一般的思維過程,把握數學知識的實質,通過自己辨圖、畫圖,實現抽象知識圖形化,復雜圖形簡單化。
作者簡介:
鮑文碐,江蘇省蘇州市,太倉實驗中學。